Cell and Tissue Research

, Volume 347, Issue 2, pp 357–367

Generation of SV40-transformed rabbit tracheal-epithelial-cell-derived blastocyst by somatic cell nuclear transfer

  • D. de Semir
  • R. Maurisse
  • F. Du
  • J. Xu
  • X. Yang
  • B. Illek
  • D. C. Gruenert
Regular Article


The prospect of developing large animal models for the study of inherited diseases, such as cystic fibrosis (CF), through somatic cell nuclear transfer (SCNT) has opened up new opportunities for enhancing our understanding of disease pathology and for identifying new therapies. Thus, the development of species-specific in vitro cell systems that will provide broader insight into organ- and cell-type-specific functions relevant to the pathology of the disease is crucial. Studies have been undertaken to establish transformed rabbit airway epithelial cell lines that display differentiated features characteristic of the primary airway epithelium. This study describes the successful establishment and characterization of two SV40-transformed rabbit tracheal epithelial cell lines. These cell lines, 5RTEo- and 9RTEo-, express the CF transmembrane conductance regulator (CFTR) gene, retain epithelial-specific differentiated morphology and show CFTR-based cAMP-dependent Cl ion transport across the apical membrane of a confluent monolayer. Immunocytochemical analysis indicates the presence of airway cytokeratins and tight-junction proteins in the 9RTEo- cell line after multiple generations. However, the tight junctions appear to diminish in their efficacy in both cell lines after at  least 100 generations. Initial SCNT studies with the 9RTEo- cells have revealed that SV40-transformed rabbit airway epithelial donor cells can be used to generate blastocysts. These cell systems provide valuable models for studying the developmental and metabolic modulation of CFTR gene expression and rabbit airway epithelial cell biology.


Respiratory airway Epithelial cell lines Somatic cell nuclear transfer SV40 transformation Cystic fibrosis transmembrane conductance regulator Blastocyst Rabbit (New Zealand White) 


  1. Bosze Z, Hiripi L, Carnwath JW, Niemann H (2003) The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 12:541–553PubMedCrossRefGoogle Scholar
  2. Burns KD, Regnier L, Roczniak A, Hebert RL (1996) Immortalized rabbit cortical collecting duct cells express AT1 angiotensin II receptors. Am J Physiol 271:F1147–F1157PubMedGoogle Scholar
  3. Cervera RP, Garcia-Ximenez F (2003) Oocyte age and nuclear donor cell type affect the technical efficiency of somatic cloning in rabbits. Zygote 11:151–158PubMedCrossRefGoogle Scholar
  4. Challah-Jacques M, Chesne P, Renard JP (2003) Production of cloned rabbits by somatic nuclear transfer. Cloning Stem Cells 5:295–299PubMedCrossRefGoogle Scholar
  5. Chen JM, Cutler C, Jacques C, Boeuf G, Denamur E, Lecointre G, Mercier B, Cramb G, Ferec C (2001) A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models. Mol Biol Evol 18:1771–1788PubMedCrossRefGoogle Scholar
  6. Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20:366–369PubMedCrossRefGoogle Scholar
  7. Cozens AL, Yezzi MJ, Chin L, Simon EM, Finkbeiner WE, Wagner JA, Gruenert DC (1992a) Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proc Natl Acad Sci USA 89:5171–5175PubMedCrossRefGoogle Scholar
  8. Cozens AL, Yezzi MJ, Yamaya M, Steiger D, Wagner JA, Garber SS, Chin L, Simon EM, Cutting GR, Gardner P et al (1992b) A transformed human epithelial cell line that retains tight junctions post crisis. In Vitro Cell Dev Biol 28A:735–744PubMedCrossRefGoogle Scholar
  9. Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10:38–47PubMedGoogle Scholar
  10. Cui W, Wylie D, Aslam S, Dinnyes A, King T, Wilmut I, Clark AJ (2003) Telomerase-immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Biol Reprod 69:15–21PubMedCrossRefGoogle Scholar
  11. de Semir D, Maurisse R, Vock E, Gruenert DC (2008) Immortalization strategies for epithelial cells in primary culture. In: Ehrhardt C, Kim K-J (eds) Biotechnology: pharmeceutical aspects; drug absorption studies—in situ, in vitro and in silico tools. Springer, New York, pp 616–639Google Scholar
  12. Diamond G, Scanlin TF, Zasloff MA, Bevins CL (1991) A cross-species analysis of the cystic fibrosis transmembrane conductance regulator. Potential functional domains and regulatory sites. J Biol Chem 266:22761–22769PubMedGoogle Scholar
  13. Du F, Giles JR, Foote RH, Graves KH, Yang X, Moreadith RW (1995) Nuclear transfer of putative rabbit embryonic stem cells leads to normal blastocyst development. J Reprod Fertil 104:219–223PubMedCrossRefGoogle Scholar
  14. Du F, Shen PC, Xu J, Sung LY, Jeong BS, Lucky Nedambale T, Riesen J, Cindy Tian X, Cheng WT, Lee SN, Yang X (2006) The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus). Theriogenology 65:642–657PubMedCrossRefGoogle Scholar
  15. Du F, Xu J, Zhang J, Gao S, Carter MG, He C, Sung LY, Chaubal S, Fissore RA, Tian XC, Yang X, Chen YE (2009) Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer. Cloning Stem Cells 11:131–140PubMedCrossRefGoogle Scholar
  16. Ehrhardt C, Collnot EM, Baldes C, Becker U, Laue M, Kim KJ, Lehr CM (2006) Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o. Cell Tissue Res 323:405–415PubMedCrossRefGoogle Scholar
  17. Fan J, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther 99:261–282PubMedCrossRefGoogle Scholar
  18. Fang ZF, Gai H, Huang YZ, Li SG, Chen XJ, Shi JJ, Wu L, Liu A, Xu P, Sheng HZ (2006) Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp Cell Res 312:3669–3682PubMedCrossRefGoogle Scholar
  19. Gomez MC, Pope CE, Dresser BL (2006) Nuclear transfer in cats and its application. Theriogenology 66:72–81PubMedCrossRefGoogle Scholar
  20. Goncz KK, Feeney L, Gruenert DC (1999) Differential sensitivity of normal and cystic fibrosis airway epithelial cells to epinephrine. Br J Pharmacol 128:227–233PubMedCrossRefGoogle Scholar
  21. Gong G, Dai Y, Zhu H, Wang H, Wang L, Li R, Wan R, Liu Y, Li N (2004) Generation of cloned calves from different types of somatic cells. Sci China C Life Sci 47:470–476PubMedCrossRefGoogle Scholar
  22. Graves KH, Moreadith RW (1993) Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev 36:424–433PubMedCrossRefGoogle Scholar
  23. Grubb BR, Boucher RC (1999) Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev 79:S193–S214PubMedGoogle Scholar
  24. Gruenert DC (1987) Differentiated properties of human epithelial cells transformed in vitro. Biotechniques 5:740–749Google Scholar
  25. Gruenert DC, Basbaum CB, Welsh MJ, Li M, Finkbeiner WE, Nadel JA (1988) Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc Natl Acad Sci USA 85:5951–5955PubMedCrossRefGoogle Scholar
  26. Gruenert DC, Basbaum CB, Widdicombe JH (1990) Long-term culture of normal and cystic fibrosis epithelial cells grown under serum-free conditions. In Vitro Cell Dev Biol 26:411–418PubMedCrossRefGoogle Scholar
  27. Gruenert DC, Finkbeiner WE, Widdicombe JH (1995) Culture and transformation of human airway epithelial cells. Am J Physiol 268:L347–L360PubMedGoogle Scholar
  28. Gruenert DC, Willems M, Cassiman JJ, Frizzell RA (2004) Established cell lines used in cystic fibrosis research. J Cyst Fibros 3 (Suppl 2):191–196PubMedCrossRefGoogle Scholar
  29. Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7PubMedCrossRefGoogle Scholar
  30. Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, Kawate N, Tamada H, Sawada T, Kumagai D, Sugiura K, Inaba T (2006) Isolation and characterization of embryonic stem-like cells from canine blastocysts. Mol Reprod Dev 73:298–305PubMedCrossRefGoogle Scholar
  31. Hayflick L (1974) The longevity of cultured human cells. J Am Geriatr Soc 22:1–12PubMedGoogle Scholar
  32. Hayflick L (1998) A brief history of the mortality and immortality of cultured cells. Keio J Med 47:174–182PubMedCrossRefGoogle Scholar
  33. Illek B, Fischer H, Machen TE (1996) Alternate stimulation of apical CFTR by genistein in epithelia. Am J Physiol 270:C265–C275PubMedGoogle Scholar
  34. Illek B, Lei D, Fischer H, Gruenert DC (2010) Sensitivity of chloride efflux vs. transepithelial measurements in mixed CF and normal airway epithelial cell populations. Cell Physiol Biochem 26:983–990PubMedCrossRefGoogle Scholar
  35. Kang SS, Wang L, Kao WW, Reinach PS, Lu L (2001) Control of SV-40 transformed RCE cell proliferation by growth-factor-induced cell cycle progression. Curr Eye Res 23:397–405PubMedCrossRefGoogle Scholar
  36. Kasinathan P, Knott JG, Wang Z, Jerry DJ, Robl JM (2001) Production of calves from G1 fibroblasts. Nat Biotechnol 19:1176–1178PubMedCrossRefGoogle Scholar
  37. Kishigami S, Wakayama T (2009) Somatic cell nuclear transfer in the mouse. Methods Mol Biol 518:207–218PubMedCrossRefGoogle Scholar
  38. Li J, Villemoes K, Zhang Y, Du Y, Kragh PM, Purup S, Xue Q, Pedersen AM, Jorgensen AL, Jakobsen JE, Bolund L, Yang H, Vajta G (2009) Efficiency of two enucleation methods connected to handmade cloning to produce transgenic porcine embryos. Reprod Domest Anim 44:122–127PubMedCrossRefGoogle Scholar
  39. Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang WH (2003) Isolation and culture of embryonic stem cells from porcine blastocysts. Mol Reprod Dev 65:429–434PubMedCrossRefGoogle Scholar
  40. Li Z, Sun X, Chen J, Liu X, Wisely SM, Zhou Q, Renard JP, Leno GH, Engelhardt JF (2006) Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol 293:439–448PubMedCrossRefGoogle Scholar
  41. Lotan R, Pieniazek J, George MD, Jetten AM (1992) Identification of a new squamous cell differentiation marker and its suppression by retinoids. J Cell Physiol 151:94–102PubMedCrossRefGoogle Scholar
  42. MacDonald C, Watts P, Stuart B, Kreuzburg-Duffy U, Scott DM, Kinne RK (1991) Studies on the phenotype and karyotype of immortalized rabbit kidney epithelial cell lines. Exp Cell Res 195:458–461PubMedCrossRefGoogle Scholar
  43. Matsuda J, Takahashi S, Ohkoshi K, Kaminaka K, Kaminaka S, Nozaki C, Maeda H, Tokunaga T (2002) Production of transgenic chimera rabbit fetuses using somatic cell nuclear transfer. Cloning Stem Cells 4:9–19PubMedCrossRefGoogle Scholar
  44. Maurisse R, de Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10:9PubMedCrossRefGoogle Scholar
  45. Nachtigal M, Legrand A, Nagpal ML, Nachtigal SA, Greenspan P (1990) Transformation of rabbit vascular smooth muscle cells by transfection with the early region of SV40 DNA. Am J Pathol 136:297–306PubMedGoogle Scholar
  46. Pilewski JM, Frizzell RA (1999) Role of CFTR in airway disease. Physiol Rev 79:S215–S255PubMedGoogle Scholar
  47. Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ (2008a) The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295:L240–L263PubMedCrossRefGoogle Scholar
  48. Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS (2008b) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577PubMedCrossRefGoogle Scholar
  49. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008c) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841PubMedCrossRefGoogle Scholar
  50. Shi LH, Ai JS, Ouyang YC, Huang JC, Lei ZL, Wang Q, Yin S, Han ZM, Sun QY, Chen DY (2008) Trichostatin A and nuclear reprogramming of cloned rabbit embryos. J Anim Sci 86:1106–1113PubMedCrossRefGoogle Scholar
  51. Shiffman ML, Spitzer RE, Swender PT, Galey WR (1983) Altered bicarbonate reabsorption in the pancreas of reserpine-treated rabbits—a model for cystic fibrosis. Pediatr Res 17:486–490PubMedCrossRefGoogle Scholar
  52. Shimada A, Nakano H, Takahashi T, Imai K, Hashizume K (2001) Isolation and characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1: development of a culture system in the absence of feeder cell. Placenta 22:652–662PubMedCrossRefGoogle Scholar
  53. Small MB, Gluzman Y, Ozer HL (1982) Enhanced transformation of human fibroblasts by origin-defective simian virus 40. Nature 296:671–672PubMedCrossRefGoogle Scholar
  54. Sun X, Yan Z, Yi Y, Li Z, Lei D, Rogers CS, Chen J, Zhang Y, Welsh MJ, Leno GH, Engelhardt JF (2008) Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 118:1578–1583PubMedCrossRefGoogle Scholar
  55. Taub M, Han HJ, Rajkhowa T, Allen C, Park JH (2002) Clonal analysis of immortalized renal proximal tubule cells: Na(+)/glucose cotransport system levels are maintained despite a decline in transport function. Exp Cell Res 281:205–212PubMedCrossRefGoogle Scholar
  56. Thenet S, Benya PD, Demignot S, Feunteun J, Adolphe M (1992) SV40-immortalization of rabbit articular chondrocytes: alteration of differentiated functions. J Cell Physiol 150:158–167PubMedCrossRefGoogle Scholar
  57. Van Goor F, Straley KS, Cao D, Gonzalez J, Hadida S, Hazlewood A, Joubran J, Knapp T, Makings LR, Miller M, Neuberger T, Olson E, Panchenko V, Rader J, Singh A, Stack JH, Tung R, Grootenhuis PD, Negulescu P (2006) Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 290:L1117–L1130PubMedCrossRefGoogle Scholar
  58. Vuillaumier S, Kaltenboeck B, Lecointre G, Lehn P, Denamur E (1997) Phylogenetic analysis of cystic fibrosis transmembrane conductance regulator gene in mammalian species argues for the development of a rabbit model for cystic fibrosis. Mol Biol Evol 14:372–380PubMedGoogle Scholar
  59. Widdicombe JH, Welsh MJ, Finkbeiner WE (1985) Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc Natl Acad Sci USA 82:6167–6171PubMedCrossRefGoogle Scholar
  60. Yang F, Hao R, Kessler B, Brem G, Wolf E, Zakhartchenko V (2007) Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation. Reproduction 133:219–230PubMedCrossRefGoogle Scholar
  61. Zakhartchenko V, Durcova-Hills G, Schernthaner W, Stojkovic M, Reichenbach HD, Mueller S, Steinborn R, Mueller M, Wenigerkind H, Prelle K, Wolf E, Brem G (1999) Potential of fetal germ cells for nuclear transfer in cattle. Mol Reprod Dev 52:421–426PubMedCrossRefGoogle Scholar
  62. Zeitlin PL, Crawford I, Lu L, Woel S, Cohen ME, Donowitz M, Montrose MH, Hamosh A, Cutting GR, Gruenert D et al (1992) CFTR protein expression in primary and cultured epithelia. Proc Natl Acad Sci USA 89:344–347PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • D. de Semir
    • 3
  • R. Maurisse
    • 3
    • 9
  • F. Du
    • 4
    • 9
  • J. Xu
    • 4
    • 9
  • X. Yang
    • 5
  • B. Illek
    • 6
  • D. C. Gruenert
    • 1
    • 2
    • 7
  1. 1.Department of Otolaryngology—Head and Neck SurgeryUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Institute for Human GeneticsUniversity of CaliforniaSan FranciscoUSA
  3. 3.California Pacific Medical Center Research InstituteSan FranciscoUSA
  4. 4.Evergen BiotechnologiesStorrsUSA
  5. 5.Institute for Regenerative MedicineUniversity of ConnecticutStorrsUSA
  6. 6.Children’s Hospital Oakland Research InstituteOaklandUSA
  7. 7.Department of PediatricsUniversity of Vermont College of MedicineBurlingtonUSA
  8. 8.MedicenParisFrance
  9. 9.Renova LifeCollege ParkUSA

Personalised recommendations