Advertisement

Cell and Tissue Research

, Volume 346, Issue 3, pp 439–449 | Cite as

Development of the zebrafish myoseptum with emphasis on the myotendinous junction

  • Benjamin Charvet
  • Marilyne Malbouyres
  • Aurélie Pagnon-Minot
  • Florence Ruggiero
  • Dominique Le GuellecEmail author
Regular Article

Abstract

Zebrafish myosepta connect two adjacent muscle cells and transmit muscular forces to axial structures during swimming via the myotendinous junction (MTJ). The MTJ establishes transmembrane linkages system consisting of extracellular matrix molecules (ECM) surrounding the basement membrane, cytoskeletal elements anchored to sarcolema, and all intermediate proteins that link ECM to actin filaments. Using a series of zebrafish specimens aged between 24 h post-fertilization and 2 years old, the present paper describes at the transmission electron microscope level the development of extracellular and intracellular elements of the MTJ. The transverse myoseptum development starts during the segmentation period by deposition of sparse and loosely organized collagen fibrils. During the hatching period, a link between actin filaments and sarcolemma is established. The basal lamina underlining sarcolemma is well differentiated. Later, collagen fibrils display an orthogonal orientation and fibroblast-like cells invade the myoseptal stroma. A dense network of collagen fibrils is progressively formed that both anchor myoseptal fibroblasts and sarcolemmal basement membrane. The differentiation of a functional MTJ is achieved when sarcolemma interacts with both cytoskeletal filaments and extracellular components. This solid structural link between contractile apparatus and ECM leads to sarcolemma deformations resulting in the formation of regular invaginations, and allows force transmission during muscle contraction. This paper presents the first ultrastructural atlas of the zebrafish MTJ development, which represents an useful tool to analyse the mechanisms of the myotendinous system formation and their disruption in muscle disorders.

Keywords

Extracellular matrix Myosepta Myotendinous junction Collagen Zebrafish, Danio rerio (Teleostei) 

Notes

Acknowledgment

We thank L. Bernard (PRECI, IFR 128 Biosciences Gerland, Lyon) for fish maintenance and helpful advice.

References

  1. Ascenzi A, Bonucci E (1968) The compressive properties of single osteons as a problem of molecular biology. Calcif Tissue Res Suppl: 44–44aGoogle Scholar
  2. Bader HL, Keene DR, Charvet B, Veit G, Driever W, Koch M, Ruggiero F (2009) Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes. Matrix Biol 28:32–43PubMedCrossRefGoogle Scholar
  3. Birk D, Trelstad RL (1984) Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol 99:2024–2033PubMedCrossRefGoogle Scholar
  4. Birk D, Trelstad RL (1985) Fibroblasts create compartments in the extracellular space where collagen polymerizes into fibrils and fibrils associate into bundles. Ann NY Acad Sci 460:258–266PubMedCrossRefGoogle Scholar
  5. Birk D, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103:231–240PubMedCrossRefGoogle Scholar
  6. Câmara-Pereira ES, Campos LM, Vaniier-Santos MA, Mermelstein CS, Costa ML (2009) Distribution of cytoskeletal and adhesion proteins in adult zebrafish skeletal muscle. Histol Histopathol 24:187–196PubMedGoogle Scholar
  7. Canty EG, Starborg T, Lu Y, Humphries SM, Homes DF, Meadows RS, Huffman A, O’Toole ET, Kadler KE (2006) Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J Biol Chem 281:38592–38598PubMedCrossRefGoogle Scholar
  8. Costa ML, Escaleira RC, Jazenko F, Mermelstein CS (2008) Cella adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix. Cell Motil Cytoskeleton 65:801–815PubMedCrossRefGoogle Scholar
  9. Crawford BD, Henry CA, Clason TA, Becker AL, Hille MB (2003) Activity and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative roles during zebrafish morphogenesis. Mol Biol Cell 14:3065–3081PubMedCrossRefGoogle Scholar
  10. Devoto SH, Melançon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–3380PubMedGoogle Scholar
  11. Dolez M, Nicolas JF, Hirsinger E (2011) Laminins, vi heparin sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating pattern of Bmp responsiveness. Development 138:97–106PubMedCrossRefGoogle Scholar
  12. Forgacs G, Newman SA, Hinner B, Maier CW, Sackmann E(2003) Assembly of collagen matrices as a phase transition revealed by structuraland rheologic studies. Biophys J 84:1272–1280Google Scholar
  13. Gawlik KI, Mayer U, Blomberg K, Sonnenberg A, Ekblom P, Durbeej M (2006) Laminin alpha1 chain mediated reduction of laminin alpha2 chain deficient muscular dystrophy involves integrin alpha7beta1 and dystroglycan. FEBS Lett 580:1759–1765PubMedCrossRefGoogle Scholar
  14. Gemballa S, Vogel F (2002) Spatial arrangement of white muscle fibers andmyoseptal tendons in fishes. Comp Biochem Physiol 133A:1013–1037Google Scholar
  15. Gemballa S, Ebmeyer L, Hagen K, Hoja K, Treiber K, Vogel F,Weitbrecht GW (2003) Evolutionary transformations of myoseptaltendons in gnathostomes. Proc R Soc Lond B 270:1229–1235Google Scholar
  16. Giraud-Guille MM, Besseau L, Chopin C, Durant P, Herbage D (2000) Structural aspects of fish skin which forms ordered arrays via liquid crystalline states. Biomaterials 21:899–906PubMedCrossRefGoogle Scholar
  17. Guyon R, An M, Zhou Y, O’Brien KF, Sheng X, Chiang K, Davidson AJ, Volinski JM, Zon LI, Kunkel LM (2003) The dystrophin associated protein complex in zebrafish. Hum Mol Genet 12:601–615PubMedCrossRefGoogle Scholar
  18. Henry CA, Amacher SL (2004) Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev Cell 7:917–923PubMedCrossRefGoogle Scholar
  19. Henry CA, Crawford BD, Yan YL, Postlethwait J, Cooper MS, Hille MB (2001) Roles for zebrafish focal adhesion kinase in notochord and somite morphogenesis. Dev Biol 240:474–487PubMedCrossRefGoogle Scholar
  20. Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE (2001) Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc Natl Acad Sci USA 98:7307–7312PubMedCrossRefGoogle Scholar
  21. Jacoby AS, Busch-Nentwich E, Bryson-Richardson RJ, Hall TE, Berger J, Berger S, Sonntag C, Sachs C, Geisler R, Stemple DL, Currie PD (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development 136:3367–3376PubMedCrossRefGoogle Scholar
  22. Kadler KE, Hill A, Canty-Laird (2008) Collagen fibrillogenesis: fibronectin, intégrines and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501PubMedCrossRefGoogle Scholar
  23. Kalston NS, Holmes DF, Kapacee Z, Otermin I, Lu Y, Ennos RA, Canty-Laird EG, Kadler KE (2010) An experimental model for studying the biomechanics of embryonic tendon: evidence that the development of mechanical properties depends on the actinomyosin machinery. Matrix Biol 29:678–689CrossRefGoogle Scholar
  24. Kostrominova TY, Clave S, Arruda EM, Larkin LM (2009) Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs engineered in vitro. Histol Histopathol 24:541–550PubMedGoogle Scholar
  25. Kudo H, Amizuka N, Araki K, Inohaya K, Kudo A (2004) Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers. Dev Biol 267:473–87PubMedCrossRefGoogle Scholar
  26. Latimer A, Jessen JR (2010) Extracellular matrix assembly and organization during zebrafish gastrulation. Matrix Biol 29:89–96PubMedCrossRefGoogle Scholar
  27. Le Guellec D, Morvan-Dubois G, Sire JY (2004) Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48:217–231PubMedCrossRefGoogle Scholar
  28. Morvan-Dubois GM, Haftek Z, Crozet C, Garrone R, Le Guellec D (2002) Structure and spatio temporal expression of the full length DNA complementary to RNA coding for alpha2 type I collagen of zebrafish. Gene 294:55–65CrossRefGoogle Scholar
  29. Parsons MJ, Campos I, Hirst EM, Stemple DL (2002) Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 129:3505–3512PubMedGoogle Scholar
  30. Ploetz C, Zycband EI, Birk DE (1991) Collagen fibril assembly and deposition in the developing dermis: segmental deposition in extracellular compartment. J Struct Biol 106:73–81PubMedCrossRefGoogle Scholar
  31. Pollard SM, Parsons MJ, Kamei M, Kettleborough RN, Thomas KA, Pham VN, Bae MK, Scott A, Weinstein BM, Stemple DL (2006) Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol 289:64–76PubMedCrossRefGoogle Scholar
  32. Sire JY, Géraudie J, Meunier FJ, Zylberberg L (1987) On the origin of ganoine: histological and ultrastructural and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridea). Am J Anat 180:391–402PubMedCrossRefGoogle Scholar
  33. Snow CJ, Henry CA (2009) Dynamic formation of microenvironments at the myotendinous junction correlates with muscle fiber morphogenesis in zebrafish. Gene Expr Patterns 9:37–42PubMedCrossRefGoogle Scholar
  34. Snow CJ, Peterson MT, Khalil A, Henry CA (2008) Muscle development is disrupted in zebrafish embryos deficient for fibronectin. Dev Dyn 237:2542–2553PubMedCrossRefGoogle Scholar
  35. Summers AP, Koob TJ (2002) The evolution of tendon. CompBiochem Physiol 133:1159–1170Google Scholar
  36. Tamori M, Yamada A, Nishida N, Motobayashi Y, Oiwa K, Motokawa T (2006) Tensilin-like stiffening protein from Holothuria leucospilota does not induce the stiffest state of catch connective tissue. J Exp Biol 209:1594–1602PubMedCrossRefGoogle Scholar
  37. Tipper JP, Lyons-Levy G, Atkinson MA, Trotter JA (2002) Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue-stiffening factor from Cucumaria frondosa dermis. Matrix Biol 21:625–635PubMedCrossRefGoogle Scholar
  38. Tongiorgi E (1999) Tenascin-C expression in the trunk of wild-type, cyclops and floating head zebrafish embryos. Brain Res Bull 48:79–88PubMedCrossRefGoogle Scholar
  39. Trelstad RL, Coulombre AJ (1971) Morphogenesis of the collagenous stroma in chick cornea. J Cell Biol 50:840–858PubMedCrossRefGoogle Scholar
  40. Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281:27461–27470PubMedCrossRefGoogle Scholar
  41. Wakatsuki T, Elson EL (2003) Reciprocal interaction between cells and extracellular matrix during remodeling of tissue constructs. Biophys Chem 10:593–605CrossRefGoogle Scholar
  42. Weber P, Montag D, Schanchner M, Bernharldt RR (1998) Zebrafish tenascin-W, a new member of the tenascin family. J Neurobiol 35:1–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Benjamin Charvet
    • 1
  • Marilyne Malbouyres
    • 1
  • Aurélie Pagnon-Minot
    • 1
  • Florence Ruggiero
    • 1
  • Dominique Le Guellec
    • 2
    • 3
    Email author
  1. 1.Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242Université Lyon 1Lyon cedex 07France
  2. 2.IFR128 Lyon Biosciences Dysfonctionnement de l′Homéostasie Tissulaire et Ingénierie ThérapeutiqueUniversité Lyon 1, CNRS, FRE 3310LyonFrance
  3. 3.IBCPLyonFrance

Personalised recommendations