Cell and Tissue Research

, Volume 346, Issue 2, pp 209–222 | Cite as

Structural messenger RNA contains cytokeratin polymerization and depolymerization signals

  • Malgorzata Kloc
  • Paul Dallaire
  • Arkadiy Reunov
  • Francois Major
Regular Article

Abstract

We have previously shown that VegT mRNA plays a structural (translation-independent) role in the organization of the cytokeratin cytoskeleton in Xenopus oocytes. The depletion of VegT mRNA causes the fragmentation of the cytokeratin network in the vegetal cortex of Xenopus oocytes. This effect can be rescued by the injection of synthetic VegT RNA into the oocyte. Here, we show that the structural function of VegT mRNA in Xenopus oocyte depends on its combinatory signals for the induction or facilitation and for the maintenance of the depolymerization vs. polymerization status of cytokeratin filaments and that the 300-nucleotide fragment of VegT RNA isolated from the context of the entire molecule induces and maintains the depolymerization of cytokeratin filaments when injected into Xenopus oocytes. A computational analysis of three homologous Xenopus VegT mRNAs has revealed the presence, within this 300-nucleotide region, of a conserved base-pairing (hairpin) configuration that might function in RNA/protein interactions.

Keywords

Structural RNA Cytokeratin Oocyte VegT mRNA Xenopus 

References

  1. Alarcon VB, Elinson RP (2001) RNA anchoring in the vegetal cortex of the Xenopus oocyte. J Cell Sci 114:1731–1741PubMedGoogle Scholar
  2. Altuvia S, Wagner EG (2000) Switching on and off with RNA. Proc Natl Acad Sci USA 97:9824–9826PubMedCrossRefGoogle Scholar
  3. Bevilacqua PC, Russell R (2008) Editorial overview: exploring the vast dynamic range of RNA dynamics. Curr Opin Chem Biol 12:601–603PubMedCrossRefGoogle Scholar
  4. Bilinski SM, Jaglarz MK, Dougherty MT, Kloc M (2010) Electron microscopy, immunostaining, cytoskeleton visualization, in situ hybridization, and three-dimensional reconstruction of Xenopus oocytes. Methods 51:11–19PubMedCrossRefGoogle Scholar
  5. Blower MD, Nachury M, Heald R, Weis K (2005) A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121:223–234PubMedCrossRefGoogle Scholar
  6. Blower MD, Feric E, Weis K, Heald R (2007) Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol 179:1365–1373PubMedCrossRefGoogle Scholar
  7. Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci USA 100:13308–13313PubMedCrossRefGoogle Scholar
  8. Clarke EJ, Allan VJ (2003) Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs. Cell Motil Cytoskel 56:13–26CrossRefGoogle Scholar
  9. D’Inca R, Marteil G, Bazile F, Pascal A, Guitton N, Lavigne R, Richard-Parpaillon L, Kubiak JZ (2010) Proteomic screen for potential regulators of M-phase entry and quality of meiotic resumption in Xenopus laevis oocytes. J Proteomics 73:1542–1550PubMedCrossRefGoogle Scholar
  10. Dobrzynski M, Bernatowicz P, Kloc M, Kubiak JZ (2011) Evolution of bet-hedging mechanisms in cell cycle and embryo development stimulated by weak linkage of stochastic processes. Results Probl Cell Differ 53:11–30PubMedCrossRefGoogle Scholar
  11. Elinson RP, King ML, Forristall C (1993) Isolated vegetal cortex from Xenopus oocytes selectively retains localized RNAs. Dev Biol 160:554–562PubMedCrossRefGoogle Scholar
  12. Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS (2001) Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev Biol 240:377–386PubMedCrossRefGoogle Scholar
  13. Helmann JD (2007) Measuring metals with RNA. Mol Cell 27:859–860PubMedCrossRefGoogle Scholar
  14. Jenny A, Hachet O, Zavorszky P, Cyrklaff A, Weston MD, Johnston DS, Erdelyi M, Ephrussi A (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133:2827–2833PubMedCrossRefGoogle Scholar
  15. Kloc M (2008) Emerging novel functions of RNAs, and binary phenotype? Dev Biol 317:401–404PubMedCrossRefGoogle Scholar
  16. Kloc M (2009) Teachings from the egg: new and unexpected functions of RNAs. Mol Reprod Dev 76:922–932PubMedCrossRefGoogle Scholar
  17. Kloc M, Etkin LD (1994) Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus after destruction of Xlsirt RNA. Science 265:1101–1103PubMedCrossRefGoogle Scholar
  18. Kloc M, Spohr G, Etkin LD (1993) Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes. Science 262:1712–1714PubMedCrossRefGoogle Scholar
  19. Kloc M, Dougherty MT, Bilinski S, Chan AP, Brey E, King ML, Patrick CW, Etkin LD (2002) Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus. Dev Biol 241:79–93PubMedCrossRefGoogle Scholar
  20. Kloc M, Wilk K, Vargas D, Shirato Y, Bilinski S, Etkin LD (2005) Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132:3445–3457PubMedCrossRefGoogle Scholar
  21. Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res 313:1639–1651PubMedCrossRefGoogle Scholar
  22. Kloc M, Foreman V, Reddy SA (2011) Binary function of mRNA. Biochemie (in press)Google Scholar
  23. Klymkowsky MW, Maynell LA (1989) MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs. Dev Biol 134:479–485PubMedCrossRefGoogle Scholar
  24. Klymkowsky MW, Maynell LA, Nislow C (1991) Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1. J Cell Biol 114:787–797PubMedCrossRefGoogle Scholar
  25. Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187PubMedCrossRefGoogle Scholar
  26. Marteil G, D’Inca R, Pascal A, Guitton N, Midtun T, Goksoyr A, Richard-Parpaillon L, Kubiak JZ (2010) EP45 accumulates in growing Xenopus laevis oocytes and has oocyte maturation enhancing activity involved in oocyte quality. J Cell Sci 123:1805–1813PubMedCrossRefGoogle Scholar
  27. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55PubMedCrossRefGoogle Scholar
  28. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219PubMedGoogle Scholar
  29. Ray PS, Jia J, Yao P, Majumder M, Hatzoglou M, Fox PL (2009) A stress-responsive RNA switch regulates VEGFA expression. Nature 457:915–919PubMedCrossRefGoogle Scholar
  30. Romby P, Wagner EG (2008) Exploring the complex world of RNA regulation. Biol Cell 100:e1–e3PubMedCrossRefGoogle Scholar
  31. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628PubMedCrossRefGoogle Scholar
  32. Zhang J, King ML (1996) Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122:4119–4129PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Malgorzata Kloc
    • 1
    • 2
  • Paul Dallaire
    • 3
  • Arkadiy Reunov
    • 4
  • Francois Major
    • 3
  1. 1.Department of SurgeryThe Methodist Hospital and The Methodist Hospital Research InstituteHoustonUSA
  2. 2.The University of Texas M D Anderson Cancer CenterHoustonUSA
  3. 3.Institute for Research in Immunology and Cancer, Department of Computer Science and Operations ResearchUniversité de MontréalMontréalCanada
  4. 4.Department of EmbryologyA.V. Zhirmunsky Institute of Marine BiologyVladivostokRussia

Personalised recommendations