Skip to main content
Log in

Transforming growth factor beta signaling in adult cardiovascular diseases and repair

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The majority of children with congenital heart disease now live into adulthood due to the remarkable surgical and medical advances that have taken place over the past half century. Because of this, adults now represent the largest age group with adult cardiovascular diseases. It includes patients with heart diseases that were not detected or not treated during childhood, those whose defects were surgically corrected but now need revision due to maladaptive responses to the procedure, those with exercise problems and those with age-related degenerative diseases. Because adult cardiovascular diseases in this population are relatively new, they are not well understood. It is therefore necessary to understand the molecular and physiological pathways involved if we are to improve treatments. Since there is a developmental basis to adult cardiovascular disease, transforming growth factor beta (TGFβ) signaling pathways that are essential for proper cardiovascular development may also play critical roles in the homeostatic, repair and stress response processes involved in adult cardiovascular diseases. Consequently, we have chosen to summarize the current information on a subset of TGFβ ligand and receptor genes and related effector genes that, when dysregulated, are known to lead to cardiovascular diseases and adult cardiovascular deficiencies and/or pathologies. A better understanding of the TGFβ signaling network in cardiovascular disease and repair will impact genetic and physiologic investigations of cardiovascular diseases in elderly patients and lead to an improvement in clinical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AOS:

Aortic aneurysms and dissections with early-onset osteoarthritis

ARVC/D or ARVD1:

Arrhythmogenic right ventricular cardiomyopathy/dysplasia

ATS:

Arterial Tortuosity syndrome

CCD:

Cleidocranial dysplasia

EDS:

Ehlers-Danlos syndrome

EMT:

Epithelial mesenchymal transition

HHT:

Hereditary hemorrhagic telangiectasia

JPS:

Juvenile polyposis syndrome

MFS:

Marfan syndrome

LDS:

Loeys-Dietz syndrome

TGFβNAb:

Pan-TGFβ neutralizing antibodies

XMVD:

X-linked myxomatous valvular dystrophy

References

  • Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386

    Article  PubMed  CAS  Google Scholar 

  • Akat K, Borggrefe M, Kaden JJ (2009) Aortic valve calcification: basic science to clinical practice. Heart 95:616–623

    Article  PubMed  CAS  Google Scholar 

  • Akhurst RJ, Lehnert SA, Faissner A, Duffie E (1990) TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development 108:645–656

    PubMed  CAS  Google Scholar 

  • Akishita M, Ito M, Lehtonen JY, Daviet L, Dzau VJ, Horiuchi M (1999) Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influences fetal vascular growth. J Clin Investig 103:63–71

    Article  PubMed  CAS  Google Scholar 

  • Alexander SM, Jackson KJ, Bushnell KM, McGuire PG (1997) Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-2) correlates with development and differentiation of valves in the embryonic avian heart. Dev Dyn 209:261–268

    Article  PubMed  CAS  Google Scholar 

  • Alvira CM, Guignabert C, Kim YM, Chen C, Wang L, Duong TT, Yeung RS, Li DY, Rabinovitch M (2011) Inhibition of transforming growth factor beta worsens elastin degradation in a murine model of Kawasaki disease. Am J Pathol 178:1210–1220

    Article  PubMed  CAS  Google Scholar 

  • Andrabi S, Bekheirnia MR, Robbins-Furman P, Lewis RA, Prior TW, Potocki L (2011) SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. Am J Med Genet A 155A:1165–1169

    PubMed  Google Scholar 

  • Anuurad E, Enkhmaa B, Gungor Z, Zhang W, Tracy RP, Pearson TA, Kim K, Berglund L (2011) Age as a modulator of inflammatory cardiovascular risk factors. Arterioscler Thromb Vasc Biol (in press)

  • Arthur HM, Bamforth SD (2011) TGFbeta signaling and congenital heart disease: insights from mouse studies. Birth Defects Res A Clin Mol Teratol 10 (in press)

  • Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, Charlton R, Parums DV, Jowett T, Marchuk DA, Burn J, Diamond AG (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217:42–53

    Article  PubMed  CAS  Google Scholar 

  • Azhar M, Schultz JE, Grupp I, Dorn GW, Meneton P, Molin DG, Gittenberger-de Groot AC, Doetschman T (2003) Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 14:391–407

    Article  PubMed  CAS  Google Scholar 

  • Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S, Doetschman T (2009a) Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn 238:431–442, PMC2805850

    Article  PubMed  CAS  Google Scholar 

  • Azhar M, Yin M, Bommireddy R, Duffy JJ, Yang J, Pawlowski SA, Boivin GP, Engle SJ, Sanford LP, Grisham C, Singh RR, Babcock GF, Doetschman T (2009b) Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis 47:423–431

    Article  PubMed  CAS  Google Scholar 

  • Azhar M, Wang PY, Frugier T, Koishi K, Deng C, Noakes PG, McLennan IS (2010) Myocardial deletion of Smad4 using a novel alpha skeletal muscle actin Cre recombinase transgenic mouse causes misalignment of the cardiac outflow tract. Int J Biol Sci 6:546–555

    PubMed  CAS  Google Scholar 

  • Azhar M, Brown K, Gard C, Chen H, Rajan S, Elliott DA, Stevens MV, Camenisch TD, Conway SJ, Doetschman T (2011) Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev Dyn 10 (in press)

  • Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274:584–594

    Article  PubMed  CAS  Google Scholar 

  • Barnard JA, Lyons RM, Moses HL (1990) The cell biology of transforming growth factor beta. Biochim Biophys Acta 1032:79–87

    PubMed  CAS  Google Scholar 

  • Barnett JV, Desgrosellier JS (2003) Early events in valvulogenesis: a signaling perspective. Birth Defects Res C Embryo Today 69:58–72

    Article  PubMed  CAS  Google Scholar 

  • Bartram U, Molin DG, Wisse LJ, Mohamad A, Sanford LP, Doetschman T, Speer CP, Poelmann RE, Gittenberger-de GA (2001) Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in Tgfb2 knockout mice. Circulation 103:2745–2752

    PubMed  CAS  Google Scholar 

  • Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C, Bauce B, Carraro G, Thiene G, Towbin JA, Danieli GA, Rampazzo A (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65:366–373

    Article  PubMed  CAS  Google Scholar 

  • Bharathy S, Xie W, Yingling JM, Reiss M (2008) Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 68:1656–1666

    Article  PubMed  CAS  Google Scholar 

  • Bommireddy R, Doetschman T (2007) Transforming growth factor-beta: from its effect in T cell activation to a role in dominant tolerance. In: Graca L (ed) The immune synapse as a novel target for therapy. Birkhauser, Basel, pp 155–168

    Google Scholar 

  • Bonyadi M, Rusholme SA, Cousins FM, Su HC, Biron CA, Farrall M, Akhurst RJ (1997) Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet 15:207–211

    Article  PubMed  CAS  Google Scholar 

  • Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC III (2008) Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N Engl J Med 358:2787–2795

    Article  PubMed  CAS  Google Scholar 

  • Brown CB, Boyer AS, Runyan RB, Barnett JV (1999) Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283:2080–2082

    Article  PubMed  CAS  Google Scholar 

  • Burrell JH, Hegarty BD, McMullen JR, Lumbers ER (2001) Effects of gestation on ovine fetal and maternal angiotensin receptor subtypes in the heart and major blood vessels. Exp Physiol 86:71–82

    Article  PubMed  CAS  Google Scholar 

  • Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47:1707–1712

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro AJ, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Investig 106:349–360

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Molin DG, Person A, Runyan RB, Gittenberger-de Groot AC, McDonald JA, Klewer SE (2002a) Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol 248:170–181

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002b) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    PubMed  CAS  Google Scholar 

  • Camenisch TD, Runyan RB, Markwald RR (2010) Molecular regulation of cushion morphogenesis. In: Harvey R, Rosenthal N (eds) Heart development and regeneration. Academic, London, pp 363–388

  • Chakraborty S, Combs MD, Yutzey KE (2010a) Transcriptional regulation of heart valve progenitor cells. Pediatr Cardiol 31:414–421

    Article  PubMed  Google Scholar 

  • Chakraborty S, Wirrig EE, Hinton RB, Merrill WH, Spicer DB, Yutzey KE (2010b) Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol (in press)

  • Choudhary B, Zhou J, Li P, Thomas S, Kaartinen V, Sucov HM (2009) Absence of TGFbeta signaling in embryonic vascular smooth muscle leads to reduced lysyl oxidase expression, impaired elastogenesis, and aneurysm. Genesis 47:115–121

    Article  PubMed  Google Scholar 

  • Clark-Greuel JN, Connolly JM, Sorichillo E, Narula NR, Rapoport HS, Mohler ER III, Gorman JH III, Gorman RC, Levy RJ (2007) Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg 83:946–953

    Article  PubMed  Google Scholar 

  • Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL, Ramirez F, Judge DP, Ward CW, Dietz HC (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210

    Article  PubMed  CAS  Google Scholar 

  • Compton LA, Potash DA, Brown CB, Barnett JV (2007) Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Circ Res 101:784–791

    Article  PubMed  CAS  Google Scholar 

  • Conway SJ, Molkentin JD (2008) Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genomics 9:548–555

    Article  PubMed  CAS  Google Scholar 

  • Cooper WO, Hernandez-Diaz S, Arbogast PG, Dudley JA, Dyer S, Gideon PS, Hall K, Ray WA (2006) Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 354:2443–2451

    Article  PubMed  CAS  Google Scholar 

  • Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GM, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, De Paepe A (2006) Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 38:452–457

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD (2008) MAP3Ks as central regulators of cell fate during development. Dev Dyn 237:3102–3114

    Article  PubMed  CAS  Google Scholar 

  • Crowe MJ, Doetschman T, Greenhalgh DG (2000) Delayed wound healing in immunodeficient TGF-beta1 knockout mice. J Invest Dermatol 115:3–11

    Article  PubMed  CAS  Google Scholar 

  • Daly AC, Randall RA, Hill CS (2008) Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol 28:6889–6902

    Article  PubMed  CAS  Google Scholar 

  • Das BB, Taylor AL, Yetman AT (2006) Left ventricular diastolic dysfunction in children and young adults with Marfan syndrome. Pediatr Cardiol 27:256–258

    Article  PubMed  CAS  Google Scholar 

  • Daugherty A, Rateri DL, Charo IF, Owens Iii AP, Howatt DA, Cassis LA (2010) Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE −/− mice. Clin Sci (Lond) (in press)

  • De Backer J (2009a) Cardiovascular characteristics in Marfan syndrome and their relation to the genotype. Verh K Acad Geneeskd Belg 71:335–371

    PubMed  Google Scholar 

  • De Backer J (2009b) The expanding cardiovascular phenotype of Marfan syndrome. Eur J Echocardiogr 10:213–215

    Article  PubMed  Google Scholar 

  • de Wit MC, de Coo IF, Lequin MH, Halley DJ, Roos-Hesselink JW, Mancini GM (2011) Combined cardiological and neurological abnormalities due to filamin A gene mutation. Clin Res Cardiol 100:45–50

    Article  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ (2007) Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Dickson MC, Slager HG, Duffie E, Mummery CL, Akhurst RJ (1993) RNA and protein localisations of TGF beta 2 in the early mouse embryo suggest an involvement in cardiac development. Development 117:625–639

    PubMed  CAS  Google Scholar 

  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  • Dietz HC (2010) TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J Clin Investig 120:403–407

    Article  PubMed  CAS  Google Scholar 

  • Divakaran V, Adrogue J, Ishiyama M, Entman ML, Haudek S, Sivasubramanian N, Mann DL (2009) Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail 2:633–642

    Article  PubMed  CAS  Google Scholar 

  • Doetschman T (1999) Interpretation of phenotype in genetically engineered mice. Lab Anim Sci 49:137–143

    PubMed  CAS  Google Scholar 

  • Dunker N, Krieglstein K (2000) Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem 267:6982–6988

    Article  PubMed  CAS  Google Scholar 

  • Dunker N, Krieglstein K (2002) Tgfbeta2 −/− Tgfbeta3 −/− double knockout mice display severe midline fusion defects and early embryonic lethality. Anat Embryol (Berl) 206:73–83

    Article  CAS  Google Scholar 

  • Eckman PM, Hsich E, Rodriguez ER, Gonzalez-Stawinski GV, Moran R, Taylor DO (2009) Impaired systolic function in Loeys-Dietz syndrome: a novel cardiomyopathy? Circ Heart Fail 2:707–708

    Article  PubMed  Google Scholar 

  • Force T, Bonow RO, Houser SR, Solaro RJ, Hershberger RE, Adhikari B, Anderson ME, Boineau R, Byrne BJ, Cappola TP, Kalluri R, LeWinter MM, Maron MS, Molkentin JD, Ommen SR, Regnier M, Tang WH, Tian R, Konstam MA, Maron BJ, Seidman CE (2010) Research priorities in hypertrophic cardiomyopathy: report of a working group of the national heart, lung, and blood institute. Circulation 122:1130–1133

    Article  PubMed  Google Scholar 

  • Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E (2003) Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 44(Suppl 1):109–116

    PubMed  CAS  Google Scholar 

  • Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  • Gitler AD, Lu MM, Jiang YQ, Epstein JA, Gruber PJ (2003) Molecular markers of cardiac endocardial cushion development. Dev Dyn 228:643–650

    Article  PubMed  CAS  Google Scholar 

  • Gomez D, Al Haj ZA, Borges LF, Philippe M, Gutierrez PS, Jondeau G, Michel JB, Vranckx R (2009) Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J Pathol 218:131–142

    Article  PubMed  CAS  Google Scholar 

  • Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    PubMed  CAS  Google Scholar 

  • Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K (2007) Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors. J Biol Chem 282:20603–20611

    Article  PubMed  CAS  Google Scholar 

  • Goumans MJ, Liu Z, ten Dijke P (2008) TGF-beta signaling in vascular biology and dysfunction. Cell Res 77:791–799

    Google Scholar 

  • Grande-Allen KJ, Griffin BP, Ratliff NB, Cosgrove DM, Vesely I (2003) Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. J Am Coll Cardiol 42:271–277

    Article  PubMed  CAS  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  • Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, Chen Y, Modiri AN, Judge DP, Dietz HC (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332:361–365

    Article  PubMed  CAS  Google Scholar 

  • Hakuno D, Kimura N, Yoshioka M, Fukuda K (2009) Molecular mechanisms underlying the onset of degenerative aortic valve disease. J Mol Med 87:17–24

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DW (2008) Functional role of periostin in development and wound repair: implications for connective tissue disease. J Cell Commun Signal 2:9–17

    Article  PubMed  Google Scholar 

  • Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46

    Article  PubMed  CAS  Google Scholar 

  • Hinton RB, Adelman-Brown J, Witt S, Krishnamurthy VK, Osinska H, Sakthivel B, James JF, Li DY, Narmoneva DA, Mecham RP, Benson DW (2010) Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model. Circ Res 107:549–557

    Article  PubMed  CAS  Google Scholar 

  • Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361

    Article  PubMed  CAS  Google Scholar 

  • Holweg CT, Baan CC, Niesters HG, Vantrimpont PJ, Mulder PG, Maat AP, Weimar W, Balk AH (2001) TGF-beta1 gene polymorphisms in patients with end-stage heart failure. J Heart Lung Transpl 20:979–984

    Article  CAS  Google Scholar 

  • Horbelt D, Guo G, Robinson PN, Knaus P (2010) Quantitative analysis of TGFBR2 mutations in Marfan-syndrome-related disorders suggests a correlation between phenotypic severity and Smad signaling activity. J Cell Sci 123:4340–4350

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Morrissey P, Yao J, Xu Z (2004) Development of AT(1) and AT(2) receptors in the ovine fetal brain. Brain Res Dev Brain Res 19(150):51–61

    Article  CAS  Google Scholar 

  • Hu BC, Li L, Sun RH, Gao PJ, Zhu DL, Wang JG, Chu SL (2010) The association between transforming growth factor beta3 polymorphisms and left ventricular structure in hypertensive subjects. Clin Chim Acta 411:558–562

    Article  PubMed  CAS  Google Scholar 

  • Jackson CF, Wenger NK (2011) Cardiovascular disease in the elderly. Rev Esp Cardiol 64:697–712

    Article  PubMed  Google Scholar 

  • Jain D, Dietz HC, Oswald GL, Maleszewski JJ, Halushka MK (2011) Causes and histopathology of ascending aortic disease in children and young adults. Cardiovasc Pathol 20:15–25

    Google Scholar 

  • Jian B, Xu J, Connolly J, Savani RC, Narula N, Liang B, Levy RJ (2002) Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol 161:2111–2121

    Article  PubMed  CAS  Google Scholar 

  • Jian B, Narula N, Li QY, Mohler ER III, Levy RJ (2003) Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg 75:457–465

    Article  PubMed  Google Scholar 

  • Jiao K, Langworthy M, Batts L, Brown CB, Moses HL, Baldwin HS (2006) Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133:4585–4593

    Article  PubMed  CAS  Google Scholar 

  • Jinnin M, Ihn H, Tamaki K (2006) Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol 69:597–607

    Article  PubMed  CAS  Google Scholar 

  • Johren O, Dendorfer A, Dominiak P (2004) Cardiovascular and renal function of angiotensin II type-2 receptors. Cardiovasc Res 62:460–467

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Black MJ, Widdop RE (2004) Angiotensin AT2 receptor contributes to cardiovascular remodelling of aged rats during chronic AT1 receptor blockade. J Mol Cell Cardiol 37:1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421

    Article  PubMed  CAS  Google Scholar 

  • Kallapur S, Ormsby I, Doetschman T (1999) Strain dependency of TGFbeta1 function during embryogenesis. Mol Reprod Dev 52:341–349

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19:385–394

    Google Scholar 

  • Kehat I, Molkentin JD (2010) Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann N Y Acad Sci 1188:96–102

    Article  PubMed  CAS  Google Scholar 

  • Khairy P, Hosn JA, Broberg C, Cook S, Earing M, Gersony D, Kay J, Landzberg MJ, Nickolaus MJ, Opotowsky S, Valente AM, Warnes C, Webb G, Gurvitz MZ (2008) Multicenter research in adult congenital heart disease. Int J Cardiol 129:155–159

    Article  PubMed  Google Scholar 

  • Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H (2003) Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 17:1979–1991

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Li C, Qiao W, Mamura M, Kasperczak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim SJ, Fu XY, Deng C, Letterio JJ (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Kim L, Kim DK, Yang WI, Shin DH, Jung IM, Park HK, Chang BC (2008) Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci 23:41–48

    Article  PubMed  Google Scholar 

  • King VL, Lin AY, Kristo F, Anderson TJ, Ahluwalia N, Hardy GJ, Owens AP III, Howatt DA, Shen D, Tager AM, Luster AD, Daugherty A, Gerszten RE (2009) Interferon-gamma and the interferon-inducible chemokine CXCL10 protect against aneurysm formation and rupture. Circulation 119:426–435

    Article  PubMed  CAS  Google Scholar 

  • Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC (2008) Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 283:7628–7637

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg HM (2004) Twist genes regulate Runx2 and bone formation. Dev Cell 6:317–318

    Article  PubMed  CAS  Google Scholar 

  • Kruzynska-Frejtag A, Machnicki M, Rogers R, Markwald RR, Conway SJ (2001) Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mech Dev 103:183–188

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, Gress RE, Karlsson S (1995) Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol 146:264–275

    PubMed  CAS  Google Scholar 

  • Kumar R, Singh VP, Baker KM (2008) The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens 17:168–173

    Article  PubMed  CAS  Google Scholar 

  • Kundu M, Javed A, Jeon JP, Horner A, Shum L, Eckhaus M, Muenke M, Lian JB, Yang Y, Nuckolls GH, Stein GS, Liu PP (2002) Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat Genet 32:639–644

    Article  PubMed  CAS  Google Scholar 

  • Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V, Young I, Trochu JN, Le Marec H, Schott JJ (2007) Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115:40–49

    Article  PubMed  CAS  Google Scholar 

  • Lacha J, Hubacek JA, Potmesil P, Viklicky O, Malek I, Vitko S (2001) TGF-beta I gene polymorphism in heart transplant recipients–effect on renal function. Ann Transplant 6:39–43

    PubMed  CAS  Google Scholar 

  • Lacro RV, Dietz HC, Wruck LM, Bradley TJ, Colan SD, Devereux RB, Klein GL, Li JS, Minich LL, Paridon SM, Pearson GD, Printz BF, Pyeritz RE, Radojewski E, Roman MJ, Saul JP, Stylianou MP, Mahony L (2007) Rationale and design of a randomized clinical trial of beta-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am Heart J 154:624–631

    Article  PubMed  CAS  Google Scholar 

  • Langlois D, Hneino M, Bouazza L, Parlakian A, Sasaki T, Bricca G, Li JY (2010) Conditional inactivation of TGF-beta type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 19:1069–1082

    Article  PubMed  CAS  Google Scholar 

  • Lebrin F, Deckers M, Bertolino P, ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65:599–608

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R (2007) TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 26:3957–3967

    Article  PubMed  CAS  Google Scholar 

  • Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, Vale W (2000) Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404:411–414

    Article  PubMed  CAS  Google Scholar 

  • Li YL, Xiao ZS (2007) Advances in Runx2 regulation and its isoforms. Med Hypotheses 68:169–175

    Article  PubMed  CAS  Google Scholar 

  • Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG (1997) Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96:874–881

    PubMed  CAS  Google Scholar 

  • Li XC, Shao Y, Zhuo JL (2009) AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla. Kidney Int 76:169–177

    Article  PubMed  CAS  Google Scholar 

  • Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y, Yamamoto H, Bertram JF (2010) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624

    Article  PubMed  CAS  Google Scholar 

  • Li L, Fan D, Wang C, Wang JY, Cui XB, Wu D, Zhou Y, Wu LL (2011) Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-{beta}1 pathways in cardiac fibroblasts. Cardiovasc Res 91:80–89

    Article  PubMed  CAS  Google Scholar 

  • Lim H, Zhu YZ (2006) Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci 63:2584–2596

    Article  PubMed  CAS  Google Scholar 

  • Lincoln J, Lange AW, Yutzey KE (2006) Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 294:292–302

    Article  PubMed  CAS  Google Scholar 

  • Lindsay ME, Dietz HC (2011) Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 19(473):308–316

    Article  CAS  Google Scholar 

  • Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF, Lurie PR, McCoy KL, McDonald MA, Messere JE, Colan SD (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655

    Article  PubMed  Google Scholar 

  • Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S, Margulies K (2006) Periostin and periostin-like factor in the human heart: possible therapeutic targets. Cardiovasc Pathol 15:24–32

    Article  PubMed  CAS  Google Scholar 

  • Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    Article  PubMed  CAS  Google Scholar 

  • Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Casillas F, Wrana JL, Massague J (1993) Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444

    Article  PubMed  CAS  Google Scholar 

  • Lucas RV Jr, Edwards JE (1982) The floppy mitral valve. Curr Probl Cardiol 7:1–48

    Article  PubMed  Google Scholar 

  • Luukko K, Ylikorkala A, Makela TP (2001) Developmentally regulated expression of Smad3, Smad4, Smad6, and Smad7 involved in TGF-beta signaling. Mech Dev 101:209–212

    Article  PubMed  CAS  Google Scholar 

  • Makita N, Suzuki M, Asami S, Takahata R, Kohzaki D, Kobayashi S, Hakamazuka T, Hozumi N (2008) Two of four alternatively spliced isoforms of RUNX2 control osteocalcin gene expression in human osteoblast cells. Gene 413:8–17

    Article  PubMed  CAS  Google Scholar 

  • Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R, Fradelizi D, Tedgui A (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89:930–934

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Norris RA, Moreno-Rodriguez R, Levine RA (2010) Developmental basis of adult cardiovascular diseases: valvular heart diseases. Ann NY Acad Sci 1188:177–183

    Article  PubMed  Google Scholar 

  • Massague J, Attisano L, Wrana JL (1994) The TGF-b family and its composite receptors. Trends Cell Biol 4:172–178

    Article  PubMed  CAS  Google Scholar 

  • Matt P, Schoenhoff F, Habashi J, Holm T, van Erp C, Loch D, Carlson OD, Griswold BF, Fu Q, De Backer J, Loeys B, Huso DL, McDonnell NB, Van Eyk JE, Dietz HC (2009) Circulating transforming growth factor-{beta} in Marfan syndrome. Circulation 120:526–532

    Google Scholar 

  • McNally E, MacLeod H, Dellefave L (2008) Arrhythmogenic right ventricular dysplasia/cardiomyopathy, autosomal dominant. In: GeneReviews at GeneTests: Medical Genetics Information Resource [database online]. Seattle, WA: Universtiy of Washington; 2008

  • Mendoza-Villanueva D, Deng W, Lopez-Camacho C, Shore P (2010) The Runx transcriptional co-activator, CBFbeta, is essential for invasion of breast cancer cells. Mol Cancer 9:171

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185:146–156

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Pimentel ME, Hubbard AD, Runyan RB (2007) Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 304:420–432

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M, Morisaki H, Ihara M, Kinoshita A, Yoshiura K, Junien C, Kajii T, Jondeau G, Ohta T, Kishino T, Furukawa Y, Nakamura Y, Niikawa N, Boileau C, Matsumoto N (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860

    Article  PubMed  CAS  Google Scholar 

  • Mohler ER III, Chawla MK, Chang AW, Vyavahare N, Levy RJ, Graham L, Gannon FH (1999) Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis 8:254–260

    PubMed  Google Scholar 

  • Molin DG, Bartram U, Van der HK, Van Iperen L, Speer CP, Hierck BP, Poelmann RE, Gittenberger-de-Groot AC (2003) Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Dev Dyn 227:431–444

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, Chu GC, Sarkar M, Berul C, Smoot L, Robertson EJ, Schwartz R, Seidman JG, Seidman CE (2011) Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. [corrected]. Proc Natl Acad Sci USA 108:4006–4011

    Article  PubMed  CAS  Google Scholar 

  • Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714

    Article  PubMed  CAS  Google Scholar 

  • Movahed MR, Saito Y, Ahmadi-Kashani M, Ebrahimi R (2007) Mitral annulus calcification is associated with valvular and cardiac structural abnormalities. Cardiovasc Ultrasound 5:14

    Article  PubMed  Google Scholar 

  • Napierala D, Sam K, Morello R, Zheng Q, Munivez E, Shivdasani RA, Lee B (2008) Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome. Hum Mol Genet 17:2244–2254

    Article  PubMed  CAS  Google Scholar 

  • Nataatmadja M, West J, West M (2006) Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 114:I371–I377

    Article  PubMed  CAS  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  PubMed  CAS  Google Scholar 

  • Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP, Dietz HC (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Investig 114:1586–1592

    PubMed  CAS  Google Scholar 

  • Nie X, Deng CX, Wang Q, Jiao K (2008) Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects. Dev Biol 316:417–430

    Article  PubMed  CAS  Google Scholar 

  • Nomura-Kitabayashi A, Anderson GA, Sleep G, Mena J, Karabegovic A, Karamath S, Letarte M, Puri MC (2009) Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol 335:66–77

    Article  PubMed  CAS  Google Scholar 

  • Norris RA, Moreno-Rodriguez RA, Sugi Y, Hoffman S, Amos J, Hart MM, Potts JD, Goodwin RL, Markwald RR (2008) Periostin regulates atrioventricular valve maturation. Dev Biol 316:200–213

    Article  PubMed  CAS  Google Scholar 

  • Norris RA, Potts JD, Yost MJ, Junor L, Brooks T, Tan H, Hoffman S, Hart MM, Kern MJ, Damon B, Markwald RR, Goodwin RL (2009) Periostin promotes a fibroblastic lineage pathway in atrioventricular valve progenitor cells. Dev Dyn 238:1052–1063

    Article  PubMed  CAS  Google Scholar 

  • Norris RA, Moreno-Rodriguez R, Wessels A, Merot J, Bruneval P, Chester AH, Yacoub MH, Hagege A, Slaugenhaupt SA, Aikawa E, Schott JJ, Lardeux A, Harris BS, Williams LK, Richards A, Levine RA, Markwald RR (2010) Expression of the familial cardiac valvular dystrophy gene, filamin-A, during heart morphogenesis. Dev Dyn 239:2118–2127

    Article  PubMed  CAS  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  PubMed  CAS  Google Scholar 

  • Otto F, Kanegane H, Mundlos S (2002) Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat 19:209–216

    Article  PubMed  CAS  Google Scholar 

  • Paradies NE, Sanford LP, Doetschman T, Friedman RA (1998) Developmental expression of the TGF betas in the mouse cochlea. Mechs Dev 79:165–168

    Article  CAS  Google Scholar 

  • Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL, Kuhl U, Schultheiss HP (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756

    PubMed  CAS  Google Scholar 

  • Pearson GD, Devereux R, Loeys B, Maslen C, Milewicz D, Pyeritz R, Ramirez F, Rifkin D, Sakai L, Svensson L, Wessels A, Van Eyk J, Dietz HC (2008) Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on research in Marfan syndrome and related disorders. Circulation 118:785–791

    Article  PubMed  Google Scholar 

  • Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL (2007) Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:3015–3038

    Article  PubMed  Google Scholar 

  • Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63:5357–5362

    PubMed  CAS  Google Scholar 

  • Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25:8581–8591

    Article  PubMed  CAS  Google Scholar 

  • Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS (2006) Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 25:589–600

    Article  PubMed  CAS  Google Scholar 

  • Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T (1995) Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 11:409–414

    Article  PubMed  CAS  Google Scholar 

  • Rajamannan NM (2009) Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler Thromb Vasc Biol 29:162–168

    Article  PubMed  CAS  Google Scholar 

  • Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184

    Article  PubMed  Google Scholar 

  • Rampazzo A, Beffagna G, Nava A, Occhi G, Bauce B, Noiato M, Basso C, Frigo G, Thiene G, Towbin J, Danieli GA (2003) Arrhythmogenic right ventricular cardiomyopathy type 1 (ARVD1): confirmation of locus assignment and mutation screening of four candidate genes. Eur J Hum Genet 11:69–76

    Article  PubMed  CAS  Google Scholar 

  • Renard M, Holm T, Veith R, Callewaert BL, Ades LC, Baspinar O, Pickart A, Dasouki M, Hoyer J, Rauch A, Trapane P, Earing MG, Coucke PJ, Sakai LY, Dietz HC, De Paepe AM, Loeys BL (2010) Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet 18:895–901

    Google Scholar 

  • Roberts AB, Flanders KC, Heine UI, Jakowlew S, Kondaiah P, Kim SJ, Sporn MB (1990a) Transforming growth factor-beta: multifunctional regulator of differentiation and development. Phil Trans R Soc Lond B 327:145–154

    Article  CAS  Google Scholar 

  • Roberts AB, Heine UI, Flanders KC, Sporn MB (1990b) Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann N Y Acad Sci 580:225–232

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Tian F, Byfield SD, Stuelten C, Ooshima A, Saika S, Flanders KC (2006) Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17:19–27

    Article  PubMed  CAS  Google Scholar 

  • Robson A, Allinson KR, Anderson RH, Henderson DJ, Arthur HM (2010) The TGFbeta type II receptor plays a critical role in the endothelial cells during cardiac development. Dev Dyn 239:2435–2442

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, Ruperez M, Egido J, Ruiz-Ortega M (2005) Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 111:2509–2517

    Article  PubMed  CAS  Google Scholar 

  • Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, De Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    Article  PubMed  Google Scholar 

  • Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  PubMed  CAS  Google Scholar 

  • Ross S, Hill CS (2008) How the Smads regulate transcription. Int J Biochem Cell Biol 40:383–408

    Article  PubMed  CAS  Google Scholar 

  • Runyan RB, Heimark RL, Camenisch TD, Klewer SE (2005) Epithelial-mesenchymal transformation in the embryonic heart. In: Savagner P (ed) Rise and fall of the epithelium. Kluwer/Plenum, Netherlands, pp. 40–55 (http://www.eurekah.com)

  • Saika S, Liu CY, Azhar M, Sanford LP, Doetschman T, Gendron RL, Kao CW, Kao WW (2001) TGFbeta2 in corneal morphogenesis during mouse embryonic development. Dev Biol 240:419–432

    Article  PubMed  CAS  Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de GA, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non- overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670

    PubMed  CAS  Google Scholar 

  • Sanford LP, Kallapur S, Ormsby I, Doetschman T (2001) Influence of genetic background on knockout mouse phenotypes. Methods Mol Biol 158:217–225

    PubMed  CAS  Google Scholar 

  • Santiago-Sim T, Mathew-Joseph S, Pannu H, Milewicz DM, Seidman CE, Seidman JG, Kim DH (2009) Sequencing of TGF-beta pathway genes in familial cases of intracranial aneurysm. Stroke 40:1604–1611

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K (2001) Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem 276:17871–17877

    Article  PubMed  CAS  Google Scholar 

  • Schultz JJ, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T (2002) TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Investig 109:787–796

    CAS  Google Scholar 

  • Shelton EL, Yutzey KE (2008) Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 317:282–295

    Article  PubMed  CAS  Google Scholar 

  • Shimizu C, Jain S, Davila S, Hibberd ML, Lin KO, Molkara D, Frazer JR, Sun S, Baker AL, Newburger JW, Rowley AH, Shulman ST, Davila S, Burgner D, Breunis WB, Kuijpers TW, Wright VJ, Levin M, Eleftherohorinou H, Coin L, Popper SJ, Relman DA, Fury W, Lin C, Mellis S, Tremoulet AH, Burns JC (2011) Transforming growth factor-{beta} signaling pathway in patients with Kawasaki disease. Circ Cardiovasc Genet 4:16–25

    Article  PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Doetschman T (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    Article  PubMed  CAS  Google Scholar 

  • Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102:752–760

    Article  PubMed  CAS  Google Scholar 

  • Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ (2009) Origin of cardiac fibroblasts and the role of periostin. Circ Res 105:934–947, PMC2786053

    Article  PubMed  CAS  Google Scholar 

  • Soler-Soler J, Galve E (2000) Worldwide perspective of valve disease. Heart 83:721–725

    Article  PubMed  CAS  Google Scholar 

  • Song L, Yan W, Chen X, Deng CX, Wang Q, Jiao K (2007) Myocardial smad4 is essential for cardiogenesis in mouse embryos. Circ Res 101:277–285

    Article  PubMed  CAS  Google Scholar 

  • Song L, Zhao M, Wu B, Zhou B, Wang Q, Jiao K (2011) Cell autonomous requirement of endocardial Smad4 during atrioventricular cushion development in mouse embryos. Dev Dyn 240:211–220

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB (2006) The early history of TGF-beta, and a brief glimpse of its future. Cytokine Growth Factor Rev 17:3–7

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB (1990) The transforming growth factor-betas: past, present, and future. [Review]. Ann N Y Acad Sci 593:1–6

    Article  PubMed  CAS  Google Scholar 

  • Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V (2008) Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol 322:208–218

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–4329

    Article  PubMed  CAS  Google Scholar 

  • Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol Cell Biol 23:4371–4385

    Article  PubMed  CAS  Google Scholar 

  • Stevens MV, Parker P, Vaillancourt RR, Camenisch TD (2006) MEKK4 regulates developmental EMT in the embryonic heart. Dev Dyn 235:2761–2770

    Article  PubMed  CAS  Google Scholar 

  • Stevens MV, Broka DM, Parker P, Rogowitz E, Vaillancourt RR, Camenisch TD (2008) MEKK3 initiates transforming growth factor beta 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis. Circ Res 103:1430–1440

    Article  PubMed  CAS  Google Scholar 

  • Subramanian R, Olson LJ, Edwards WD (1984) Surgical pathology of pure aortic stenosis: a study of 374 cases. Mayo Clin Proc 59:683–690

    PubMed  CAS  Google Scholar 

  • Supino PG, Borer JS, Preibisz J, Bornstein A (2006) The epidemiology of valvular heart disease: a growing public health problem. Heart Fail Clin 2:379–393

    Article  PubMed  Google Scholar 

  • Tamura K, Fukuda Y, Ishizaki M, Masuda Y, Yamanaka N, Ferrans VJ (1995) Abnormalities in elastic fibers and other connective-tissue components of floppy mitral valve. Am Heart J 129:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Snider P, Firulli AB, Conway SJ (2010) Trigenic neural crest-restricted Smad7 over-expression results in congenital craniofacial and cardiovascular defects. Dev Biol 344:233–247

    Google Scholar 

  • Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG (2010) Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J Clin Invest 42028

  • ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    Google Scholar 

  • Tieu BC, Lee C, Sun H, Lejeune W, Recinos A III, Ju X, Spratt H, Guo DC, Milewicz D, Tilton RG, Brasier AR (2009) An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Investig 119:3637–3651

    Article  PubMed  CAS  Google Scholar 

  • Todorovic V, Finnegan E, Freyer L, Zilberberg L, Ota M, Rifkin DB (2011) Long form of latent TGF-beta binding protein 1 (Ltbp1L) regulates cardiac valve development. Dev Dyn 240:176–187

    Article  PubMed  CAS  Google Scholar 

  • Townsend TA, Robinson JY, Deig CR, Hill CR, Misfeldt A, Blobe GC, Barnett JV (2011) BMP-2 and TGFbeta2 shared pathways regulate endocardial cell transformation. Cells Tissues Organs (in press)

  • Tran-Fadulu V, Pannu H, Kim DH, Vick GW III, Lonsford CM, Lafont AL, Boccalandro C, Smart S, Peterson KL, Hain JZ, Willing MC, Coselli JS, LeMaire SA, Ahn C, Byers PH, Milewicz DM (2009) Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet 46:607–613

    Article  PubMed  CAS  Google Scholar 

  • Uddin MJ, Crews BC, Blobaum AL, Kingsley PJ, Gorden DL, McIntyre JO, Matrisian LM, Subbaramaiah K, Dannenberg AJ, Piston DW, Marnett LJ (2010) Selective visualization of cyclooxygenase-2 in inflammation and cancer by targeted fluorescent imaging agents. Cancer Res 70:3618–3627

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov B, Xu Z, Tetri LH, Inagami T, Neuschwander-Tetri BA (2009) Protective role of angiotensin II type 2 receptor signaling in a mouse model of pancreatic fibrosis. Am J Physiol Gastrointest Liver Physiol 296:G284–G294

    Article  PubMed  CAS  Google Scholar 

  • van de Laar I, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, Hoedemaekers YM, Willemsen R, Severijnen LA, Venselaar H, Vriend G, Pattynama PM, Collee M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IM, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EH, Oostra BA, Wessels MW, Bertoli-Avella AM (2011) Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121–126

    Article  PubMed  CAS  Google Scholar 

  • Villar AV, Cobo M, Llano M, Montalvo C, Gonzalez-Vilchez F, Martin-Duran R, Hurle MA, Nistal JF (2009) Plasma levels of transforming growth factor-beta1 reflect left ventricular remodeling in aortic stenosis. PLoS One 4:e8476

    Article  PubMed  CAS  Google Scholar 

  • Vrljicak P, Chang AC, Morozova O, Wederell ED, Niessen K, Marra MA, Karsan A, Hoodless PA (2010) Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal. Physiol Genomics 40:150–157

    Article  PubMed  CAS  Google Scholar 

  • Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA (2004) Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res 95:253–260

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Xu N, Feng X, Hou N, Zhang J, Cheng X, Chen Y, Zhang Y, Yang X (2005) Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res 97:821–828

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Nagy A, Larsson J, Dudas M, Sucov HM, Kaartinen V (2006) Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects. BMC Dev Biol 6:51

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadiere C, Renia L, Johnson JL, Tharaux PL, Tedgui A, Mallat Z (2010) TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Investig 120:422–432

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Greene SB, Martin JF (2011) BMP signaling in congenital heart disease: new developments and future directions. Birth Defects Res A Clin Mol Teratol 91:441–448

    Article  PubMed  CAS  Google Scholar 

  • Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B, Demer LL (1994) TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Investig 93:2106–2113

    Article  PubMed  CAS  Google Scholar 

  • Wirrig EE, Yutzey KE (2011) Transcriptional regulation of heart valve development and disease. Cardiovasc Pathol 20:162–167

    Article  PubMed  CAS  Google Scholar 

  • Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343

    Article  PubMed  CAS  Google Scholar 

  • Xiao ZS, Hjelmeland AB, Quarles LD (2004) Selective deficiency of the "bone-related" Runx2-II unexpectedly preserves osteoblast-mediated skeletogenesis. J Biol Chem 279:20307–20313

    Article  PubMed  CAS  Google Scholar 

  • Xiong DH, Liu XG, Guo YF, Tan LJ, Wang L, Sha BY, Tang ZH, Pan F, Yang TL, Chen XD, Lei SF, Yerges LM, Zhu XZ, Wheeler VW, Patrick AL, Bunker CH, Guo Y, Yan H, Pei YF, Zhang YP, Levy S, Papasian CJ, Xiao P, Lundberg YW, Recker RR, Liu YZ, Liu YJ, Zmuda JM, Deng HW (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84:388–398

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Liu AC, Gotlieb AI (2010) Common pathogenic features of atherosclerosis and calcific aortic stenosis: role of transforming growth factor-beta. Cardiovasc Pathol 19:236–247

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H, Ichijo H, Grimsby S, Moren A, ten Dijke P, Miyazono K (1994) Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factor-beta. J Biol Chem 269:1995–2001

    PubMed  CAS  Google Scholar 

  • Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–924

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Yang X (2010) Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci 6:1–8

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Boerm M, McCarty M, Bucana C, Fidler IJ, Zhuang Y, Su B (2000) Mekk3 is essential for early embryonic cardiovascular development. Nat Genet 24:309–313

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Wakabayashi Y, Mori T (2010) Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 147:781–792

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Obata H, Jurukovski V, Mazzieri R, Chen Y, Zilberberg L, Huso D, Melamed J, Prijatelj P, Todorovic V, Dabovic B, Rifkin DB (2008) Perturbation of transforming growth factor (TGF)-beta1 association with latent TGF-beta binding protein yields inflammation and tumors. Proc Natl Acad Sci USA 105:18758–18763

    Article  PubMed  CAS  Google Scholar 

  • Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM (2006) Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell 124:929–942

    Article  PubMed  CAS  Google Scholar 

  • Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y (2000) A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA 97:10549–10554

    Article  PubMed  CAS  Google Scholar 

  • Zhou HM, Wang J, Elliott C, Wen W, Hamilton DW, Conway SJ (2010) Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation. J Cell Commun Signal 4:99–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by funds from the National Institutes of Health Grants – HL070174, HL92508, HL085708, HL077493, HL82851-03 and HL105280. Additional funding was provided by Arizona Biomedical Research Commission (ABRC #0901) and The Stephen Michael Schneider/The William J. "Billy" Gieszl Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Azhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doetschman, T., Barnett, J.V., Runyan, R.B. et al. Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell Tissue Res 347, 203–223 (2012). https://doi.org/10.1007/s00441-011-1241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1241-3

Keywords

Navigation