Cell and Tissue Research

, Volume 345, Issue 1, pp 41–67 | Cite as

Crustacean neuroendocrine systems and their signaling agents

Review

Abstract

Decapod crustaceans have long served as important models for the study of neuroendocrine signaling. For example, the process of neurosecretion was first formally demonstrated by using a member of this order. In this review, the major decapod neuroendocrine organs are described, as are their phylogenetic conservation and neurochemistry. In addition, recent advances in crustacean neurohormone discovery and tissue mapping are discussed, as are several recent advances in our understanding of hormonal control in this group of animals.

Keywords

Neuroendocrine organs Neurotransmitters Neurochemistry Gut Neurohormones Genome mining Mass spectral imaging Decapod crustaceans 

References

  1. Alexandrowicz JS, Carlisle DB (1953) Some experiments on the function of the pericardial organs in Crustacea. J Mar Biol Assoc UK 32:175–192CrossRefGoogle Scholar
  2. Amare A, Sweedler JV (2007) Neuropeptide precursors in Tribolium castaneum. Peptides 28:1282–1291PubMedCrossRefGoogle Scholar
  3. Andrews PM (1973) Ultrastuctural study of the pericardial organ-anterior ramifications complex neurosecretory terminals. Z Zellforsch 144:309–324PubMedCrossRefGoogle Scholar
  4. Audsley N, Weaver RJ (2006) Analysis of peptides in the brain and corpora cardiaca-corpora allata of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry. Peptides 27:512–520PubMedCrossRefGoogle Scholar
  5. Battelle BA, Kravitz EA (1978) Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J Pharmacol Exp Ther 205:438–448PubMedGoogle Scholar
  6. Bauer DJ (2007) The Daphnia genomics consortium meeting: the genome biology of the model crustacean Daphnia. Expert Rev Proteomics 4:601–602PubMedCrossRefGoogle Scholar
  7. Beltz BS (1999) Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc Res Tech 44:105–120PubMedCrossRefGoogle Scholar
  8. Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602PubMedGoogle Scholar
  9. Beltz BS, Sandeman DC (2003) Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Struct Dev 32:39–60PubMedCrossRefGoogle Scholar
  10. Beltz BS, Benton JL, Sullivan JM (2001) Transient uptake of serotonin by newborn olfactory projection neurons. Proc Natl Acad Sci USA 98:12730–12735PubMedCrossRefGoogle Scholar
  11. Benarroch EE (2009) Neuropeptide Y: its multiple effects in the CNS and potential clinical significance. Neurology 72:1016–1020PubMedCrossRefGoogle Scholar
  12. Bendtsen JD, Nielsen H, Heijne G von, Brunak S (2004) Improved prediction of signal peptides: signal P 3.0. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  13. Benton JL, Beltz BS (2001) Effects of embryonic serotonin depletion on olfactory interneurons in lobsters. J Neurobiol 46:193–205PubMedCrossRefGoogle Scholar
  14. Benton JL, Sandeman DC, Beltz BS (2007) Nitric oxide in the crustacean brain: regulation of neurogenesis and morphogenesis in the developing olfactory pathway. Dev Dyn 236:3047–3060PubMedCrossRefGoogle Scholar
  15. Benton JL, Goergen EM, Rogan SC, Beltz BS (2008) Hormonal and synaptic influences of serotonin on adult neurogenesis. Gen Comp Endocrinol 158:183–190PubMedCrossRefGoogle Scholar
  16. Bliss DE (1951) Metabolic effects of sinus gland or eyestalk removal in the land crab, Gecarcinus lateralis. Anat Rec 111:502–503Google Scholar
  17. Blitz DM, White RS, Saideman SR, Cook A, Christie AE, Nadim F, Nusbaum MP (2008) A newly identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory projection neurons. J Exp Biol 211:1000–1011PubMedCrossRefGoogle Scholar
  18. Braak CB van de, Botterblom MH, Taverne N, Muiswinkel WB van, Rombout JH, Knaap WP van der (2002) The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish Shellfish Immunol 13:293–309PubMedCrossRefGoogle Scholar
  19. Brezun JM, Daszuta A (2000) Serotonin may stimulate granule cell proliferation in the adult hyppocampus, as observed in rats grafted with fetal raphe neurons. Eur J Neurosci 12:391–396PubMedCrossRefGoogle Scholar
  20. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035–1042PubMedCrossRefGoogle Scholar
  21. Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates, SunderlandGoogle Scholar
  22. Callaway JC, Stuart AE (1999) The distribution of histamine and serotonin in the barnacle’s nervous system. Microsc Res Tech 44:94–104PubMedCrossRefGoogle Scholar
  23. Carlisle DB, Knowles F (1959) Endocrine control in crustaceans. Cambridge University Press, New YorkGoogle Scholar
  24. Cashman CR, Hsu YA, Messinger DI, Christie AE, Dickinson PS, Iglesia HO de la, Stemmler EA (2007) Identification of individual-specific variations in peptide complement of crustacean neural tissues using direct tissue MALDI-FTMS. Program no. 140.4. 2007 Neuroscience Meeting Planner. Society for Neuroscience, San Diego (online)Google Scholar
  25. Chang CC, Wu ZR, Kuo CM, Cheng W (2007) Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunol 23:24–33PubMedCrossRefGoogle Scholar
  26. Chee MJ, Colmers WF (2008) Y eat? Nutrition 24:869–877PubMedCrossRefGoogle Scholar
  27. Chen R, Hui L, Sturm RM, Li L (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20:1068–1077PubMedCrossRefGoogle Scholar
  28. Chen R, Cape SS, Sturm RM, Li L (2010) Mass spectrometric imaging of neuropeptides in decapod crustacean neuronal tissues. Methods Mol Biol 656:451–463PubMedCrossRefGoogle Scholar
  29. Cheng W, Chieu HT, Tsai CH, Chen JC (2005) Effects of dopamine on the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 19:375–385PubMedCrossRefGoogle Scholar
  30. Christie AE (2008a) Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. Gen Comp Endocrinol 157:174–185PubMedCrossRefGoogle Scholar
  31. Christie AE (2008b) In silico analyses of peptide paracrines/hormones in Aphidoidea. Gen Comp Endocrinol 159:67–79PubMedCrossRefGoogle Scholar
  32. Christie AE, Messinger DI (2005) Hormonal signaling from the crustacean stomatogastric nervous system. Comp Biochem Physiol A 141:S157Google Scholar
  33. Christie AE, Baldwin D, Turrigiano G, Graubard K, Marder E (1995a) Immunocytochemical localization of multiple cholecystokinin-like peptides in the stomatogastric nervous system of the crab Cancer borealis. J Exp Biol 198:263–271PubMedGoogle Scholar
  34. Christie AE, Skiebe P, Marder E (1995b) Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. J Exp Biol 198:2431–2439PubMedGoogle Scholar
  35. Christie AE, Baldwin DH, Marder E, Graubard K (1997) Organization of the stomatogastric neuropil of the crab, Cancer borealis, as revealed by modulator immunocytochemistry. Cell Tissue Res 288:135–148PubMedCrossRefGoogle Scholar
  36. Christie AE, Edwards JM, Cherny E, Clason TA, Graubard K (2003) Immunocytochemical evidence for nitric oxide- and carbon monoxide-producing neurons in the stomatogastric nervous system of the crayfish Cherax quadricarinatus. J Comp Neurol 467:293–306PubMedCrossRefGoogle Scholar
  37. Christie AE, Cain SD, Edwards JM, Clason TA, Cherny E, Lin M, Manhas AS, Sellereit KL, Cowan NG, Nold KA, Strassburg HP, Graubard K (2004a) The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crab Cancer productus. J Exp Biol 207:1163–1182PubMedCrossRefGoogle Scholar
  38. Christie AE, Stein W, Quinlan JE, Beenhakker MP, Marder E, Nusbaum MP (2004b) Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 469:153–169PubMedCrossRefGoogle Scholar
  39. Christie AE, Kutz-Naber KK, Stemmler EA, Klein A, Messinger DI, Goiney CC, Conterato AJ, Bruns EA, Hsu YW, Li L, Dickinson PS (2007) Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. J Exp Biol 210:699–714PubMedCrossRefGoogle Scholar
  40. Christie AE, Cashman CR, Brennan HR, Ma M, Sousa GL, Li L, Stemmler EA, Dickinson PS (2008) Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. Gen Comp Endocrinol 156:246–264PubMedCrossRefGoogle Scholar
  41. Christie AE, Durkin CS, Hartline N, Ohno P, Lenz PH (2010a) Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. Gen Comp Endocrinol 167:164–178PubMedCrossRefGoogle Scholar
  42. Christie AE, Stemmler EA, Dickinson PS (2010b) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169PubMedCrossRefGoogle Scholar
  43. Christie AE, McCoole MD, Harmon SM, Baer KN, Lenz PH (2011a) Genomic analyses of the Daphnia pulex peptidome. Gen Comp Endocrinol 171:131–150PubMedCrossRefGoogle Scholar
  44. Christie AE, Chapline MC, Jackson JM, Dowda JK, Hartline N, Malecha SR, Lenz PH (2011b) Identification, tissue distribution and orexigenic activity of neuropeptide F (NPF) in penaeid shrimp. J Exp Biol 214:1386–1396PubMedCrossRefGoogle Scholar
  45. Christie AE, Nolan DH, Ohno P, Hartline N, Lenz PH (2011c) Identification of chelicerate neuropeptides using bioinformatics of publicly accessible expressed sequence tags. Gen Comp Endocrinol 170:144–155PubMedCrossRefGoogle Scholar
  46. Chung JS, Webster SG (2006) Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas: a possible osmoregulatory role. Gen Comp Endocrinol 147:206–213PubMedCrossRefGoogle Scholar
  47. Chung JS, Hircksen H, Webster SG (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proc Natl Acad Sci USA 96:13103–13107PubMedCrossRefGoogle Scholar
  48. Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: functions, titer, and binding to target tissues. Gen Comp Endocrinol 166:447–454PubMedCrossRefGoogle Scholar
  49. Clynen E, Huybrechts J, Verleyen P, De Loof A, Schoofs L (2006) Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry. BMC Genomics 7:201PubMedCrossRefGoogle Scholar
  50. Colbourne JK, Singan VR, Gilbert DG (2005) wFleaBase: the Daphnia genome database. BMC Bioinform 6:45CrossRefGoogle Scholar
  51. Cook IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136CrossRefGoogle Scholar
  52. Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea, vol 3. Neurobiology: structure and function. Academic Press, New York, pp 206–278Google Scholar
  53. Cruz-Bermúdez ND, Marder E (2007) Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis. J Exp Biol 210:2873–2884PubMedCrossRefGoogle Scholar
  54. Cruz-Bermúdez ND, Fu Q, Kutz-Naber KK, Christie AE, Li L, Marder E (2006) Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide-like peptide from crabs of the genus Cancer. J Neurochem 97:784–799PubMedCrossRefGoogle Scholar
  55. De Kleijn DP, Van Herp F (1995) Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comp Biochem Physiol B Biochem Mol Biol 112:573–579PubMedCrossRefGoogle Scholar
  56. DeKeyser SS, Kutz-Naber KK, Schmidt JJ, Barrett-Wilt GA, Li L (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6:1782–1791PubMedCrossRefGoogle Scholar
  57. Delgado JY, Oyola E, Miller MW (2000) Localization of GABA- and glutamate-like immunoreactivity in the cardiac ganglion of the lobster Panulirus argus. J Neurocytol 29:605–619PubMedCrossRefGoogle Scholar
  58. Dickinson PS, Stemmler EA, Christie AE (2008) The pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods. J Exp Biol 211:1434–1447PubMedCrossRefGoogle Scholar
  59. Dickinson PS, Wiwatpanit T, Gabranski ER, Ackerman RJ, Stevens JS, Cashman CR, Stemmler EA, Christie AE (2009) Identification of SYWKQCAFNAVSCFamide: a broadly conserved crustacean C-type allatostatin-like peptide with both neuromodulatory and cardioactive properties. J Exp Biol 212:1140–1152PubMedCrossRefGoogle Scholar
  60. Dircksen H, Wilcockson DC, Webster SG (2005) Neuropeptides in a forgotten crustacean neurohaemal organ classic, the postcomissural organs of the shrimp Palaemon serratus. Comp Biochem Physiol A 141:S156–S157Google Scholar
  61. Djokaj S, Cooper RL, Rathmayer W (2001) Presynaptic effects of octopamine, serotonin, and cocktails of the two modulators on neuromuscular transmission in crustaceans. J Comp Physiol [A] 187:145–154CrossRefGoogle Scholar
  62. Dougan PM, Mair GR, Halton DW, Curry WJ, Day TA, Maule AG (2002) Gene organization and expression of a neuropeptide Y homolog from the land planarian Arthurdendyus triangulatus. J Comp Neurol 454:58–64PubMedCrossRefGoogle Scholar
  63. Duan S, Cooke IM (2000) Glutamate and GABA activate different receptors and Cl- conductances in crab peptide-secretory neurons. J Neurophysiol 83:31–37PubMedGoogle Scholar
  64. Duve H, Johnsen AH, Maestro JL, Scott AG, Jaros PP, Thorpe A (1997) Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. Eur J Biochem 250:727–734PubMedCrossRefGoogle Scholar
  65. Edwards DH, Kravitz EA (1997) Serotonin, social status and aggression. Curr Opin Neurobiol 7:812–819PubMedCrossRefGoogle Scholar
  66. Emeson RB, Morabito MV (2005) Food fight: the NPY-serotonin link between aggression and feeding behavior. Sci STKE 277:pe12CrossRefGoogle Scholar
  67. Evans PD, Kravitz EA, Talamo BR, Wallace BG (1976) The association of octopamine with specific neurones along lobster nerve trunks. J Physiol (Lond) 262:51–70Google Scholar
  68. Fanjul-Moles ML (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 142:390–400PubMedCrossRefGoogle Scholar
  69. Fernlund P, Josefsson L (1968) Chromactivating hormones of Pandalus borealis. Isolation and purification of the red-pigment-concentrating hormone. Biochim Biophys Acta 158:262–273PubMedGoogle Scholar
  70. Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177:173–175PubMedCrossRefGoogle Scholar
  71. Fingerman M (1966) Neurosecretory control of pigmentary effectors in crustaceans. Am Zool 6:169–179PubMedGoogle Scholar
  72. Fingerman M (1992) Glands and secretion. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, vol 10. Decapod Crustacea. Wiley-Liss, New York, pp 345–394Google Scholar
  73. Flamm RE, Harris-Warrick RM (1986a) Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. J Neurophysiol 55:847–865PubMedGoogle Scholar
  74. Flamm RE, Harris-Warrick RM (1986b) Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J Neurophysiol 55:866–881PubMedGoogle Scholar
  75. Florey E, Rathmayer M (1978) The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp Biochem Physiol C 61C:229–237PubMedCrossRefGoogle Scholar
  76. Fort TJ, Brezina V, Miller MW (2004) Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J Neurophysiol 92:3455–3470PubMedCrossRefGoogle Scholar
  77. Fu Q, Goy MF, Li L (2005a) Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry. Biochem Biophys Res Commun 337:765–778PubMedCrossRefGoogle Scholar
  78. Fu Q, Kutz KK, Schmidt JJ, Hsu YW, Messinger DI, Cain SD, Iglesia HO de la, Christie AE, Li L (2005b) Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J Comp Neurol 493:607–626PubMedCrossRefGoogle Scholar
  79. García U, Onetti C, Valdiosera R, Aréchiga H (1994) Excitatory action of γ-aminobutyric acid (GABA) on crustacean neurosecretory cells. Cell Mol Neurobiol 14:71–88PubMedCrossRefGoogle Scholar
  80. Gard AL, Lenz PH, Shaw JR, Christie AE (2009) Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol 160:271–287PubMedCrossRefGoogle Scholar
  81. Glusman S, Kravitz EA (1982) The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations. J Physiol (Lond) 325:223–241Google Scholar
  82. Goldberg D, Nusbaum MP, Marder E (1988) Substance P-like immunoreactivity in the stomatogastric nervous systems of the crab Cancer borealis and the lobsters Panulirus interruptus and Homarus americanus. Cell Tissue Res 252:515–522PubMedCrossRefGoogle Scholar
  83. Gonzalez R, Orchard I (2009) Physiological activity of neuropeptide F on the hindgut of the blood-feeding hemipteran, Rhodnius prolixus. J Insect Sci 9:1–14PubMedCrossRefGoogle Scholar
  84. Gould E (1999) Serotonin and hippocampal neurogenesis. Neuropsychopharmacology 21:46S–51SPubMedGoogle Scholar
  85. Hartline DK, Christie AE (2010) Immunohistochemical mapping of histamine, dopamine, and serotonin in the central nervous system of the copepod Calanus finmarchicus (Crustacea; Maxillopoda; Copepoda). Cell Tissue Res 341:49–71PubMedCrossRefGoogle Scholar
  86. Harzsch S, Glötzner J (2002) An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struct Dev 30:251–270PubMedCrossRefGoogle Scholar
  87. Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJ (2010) Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 9:5296-5310PubMedCrossRefGoogle Scholar
  88. Heinzel HG, Weimann JM, Marder E (1993) The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination. J Neurosci 13:1793–1803PubMedGoogle Scholar
  89. Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69PubMedCrossRefGoogle Scholar
  90. Hsu YW, Messinger DI, Chung JS, Webster SG, Iglesia HO de la, Christie AE (2006) Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implications for differential release and pleiotropic function. J Exp Biol 209:3241–3256PubMedCrossRefGoogle Scholar
  91. Hsu YW, Stemmler EA, Messinger DI, Dickinson PS, Christie AE, Iglesia HO de la (2008) Cloning and differential expression of two beta-pigment-dispersing hormone (beta-PDH) isoforms in the crab Cancer productus: evidence for authentic beta-PDH as a local neurotransmitter and beta-PDH II as a humoral factor. J Comp Neurol 508:197–211PubMedCrossRefGoogle Scholar
  92. Huber R (2005) Amines and motivated behaviors: a simpler systems approach to complex behavioral phenomena. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:231–239PubMedCrossRefGoogle Scholar
  93. Huber R, Panksepp JB, Yue Z, Delago A, Moore P (2001) Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish. Brain Behav Evol 57:271–282PubMedCrossRefGoogle Scholar
  94. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314:647–649PubMedCrossRefGoogle Scholar
  95. Humphries JE, Kimber MJ, Barton YW, Hsu W, Marks NJ, Greer B, Harriott P, Maule AG, Day TA (2004) Structure and bioactivity of neuropeptide F from the human parasites Schistosoma mansoni and Schistosoma japonicum. J Biol Chem 279:39880–39885PubMedCrossRefGoogle Scholar
  96. Huybrechts J, Nusbaum MP, Vanden Bosch L, Baggerman G, De Loof A, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Commun 308:535–544PubMedCrossRefGoogle Scholar
  97. Huybrechts J, Verleyen P, Schoofs L (2005) Mass spectrometric analysis of head ganglia and neuroendocrine tissue of larval Galleria mellonella (Arthropoda, Insecta). J Mass Spectrom 40:271–276PubMedCrossRefGoogle Scholar
  98. Huybrechts J, Bonhomme J, Minoli S, Prunier-Leterme N, Dombrovsky A, Abdel-Latief M, Robichon A, Veenstra JA, Tagu D (2010) Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:87–95PubMedCrossRefGoogle Scholar
  99. Jaros PP, Keller R (1979) Immunocytochemical identification of hyperglycemic hormone-producing cells in the eyestalk of Carcinus maenas. Cell Tissue Res 204:379–385PubMedCrossRefGoogle Scholar
  100. Johnson BR, Harris-Warrick RM (1990) Aminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion. J Neurosci 10:2066–2076PubMedGoogle Scholar
  101. Johnson BR, Harris-Warrick RM (1997) Amine modulation of glutamate responses from pyloric motor neurons in lobster stomatogastric ganglion. J Neurophysiol 78:3210–3221PubMedGoogle Scholar
  102. Johnson BR, Peck JH, Harris-Warrick RM (1993) Amine modulation of electrical coupling in the pyloric network of the lobster stomatogastric ganglion. J Comp Physiol [A] 172:715–732Google Scholar
  103. Johnson BR, Peck JH, Harris-Warrick RM (1994) Differential modulation of chemical and electrical components of mixed synapses in the lobster stomatogastric ganglion. J Comp Physiol [A] 175:233–249CrossRefGoogle Scholar
  104. Johnson BR, Peck JH, Harris-Warrick RM (1995) Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion. J Neurophysiol 74:437–452PubMedGoogle Scholar
  105. Jorge-Rivera JC, Marder E (1996) TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J Comp Physiol [A] 179:741–751Google Scholar
  106. Jorge-Rivera JC, Sen K, Birmingham JT, Abbott LF, Marder E (1998) Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. J Neurophysiol 80:2559–2570PubMedGoogle Scholar
  107. Karl T, Herzog H (2007) Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 28:326–333PubMedCrossRefGoogle Scholar
  108. Knowles FGW (1953) Endocrine activity in the crustacean nervous system. Proc R Soc Lond [Biol] 141:248–267CrossRefGoogle Scholar
  109. Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S (2009) A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139:416–427PubMedCrossRefGoogle Scholar
  110. Kravitz EA (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol [A] 186:221–238CrossRefGoogle Scholar
  111. Kravitz EA, Glusman S, Harris-Warrick RM, Livingstone MS, Schwarz T, Goy MF (1980) Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies. J Exp Biol 89:159–175PubMedGoogle Scholar
  112. LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81PubMedCrossRefGoogle Scholar
  113. Lee CY, Zou HS, Yau SM, Ju YR, Liau CS (2000) Nitric oxide synthase activity and immunoreactivity in the crayfish Procambarus clarkii. Neuroreport 11:1273–1276PubMedCrossRefGoogle Scholar
  114. Li L, Kelley WP, Billimoria CP, Christie AE, Pulver SR, Sweedler JV, Marder E (2003) Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem 87:642–656PubMedCrossRefGoogle Scholar
  115. Li JT, Lee PP, Chen OC, Cheng W, Kuo CM (2005) Dopamine depresses the immune ability and increases susceptibility to Lactococcus garvieae in the freshwater giant prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol 19:269–280PubMedCrossRefGoogle Scholar
  116. Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Arakane Y, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJ, Park Y (2007) Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18:113–122PubMedCrossRefGoogle Scholar
  117. Liu F, Baggerman G, D’Hertog W, Verleyen P, Schoofs L, Wets G (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics 5:510–522PubMedGoogle Scholar
  118. Lohrmann DM, Kamemoto FI (1987) The effect of dibutyryl cAMP on sodium uptake by isolated perfused gills of Callinectes sapidus. Gen Comp Endocrinol 65:300–305PubMedCrossRefGoogle Scholar
  119. Ma M, Chen R, Sousa GL, Bors EK, Kwiatkowski MA, Goiney CC, Goy MF, Christie AE, Li L (2008) Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 156:395–409PubMedCrossRefGoogle Scholar
  120. Ma M, Bors EK, Dickinson ES, Kwiatkowski MA, Sousa GL, Henry RP, Smith CM, Towle DW, Christie AE, Li L (2009a) Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen Comp Endocrinol 161:320–334PubMedCrossRefGoogle Scholar
  121. Ma M, Chen RB, Ge Y, He H, Marshall AG, Li L (2009b) Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. Anal Chem 81:240–247PubMedCrossRefGoogle Scholar
  122. Ma M, Wang J, Chen R, Li L (2009c) Expanding the crustacean neuropeptidome using a multifaceted mass spectrometric approach. J Proteome Res 8:2426–2437PubMedCrossRefGoogle Scholar
  123. Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L (2010) Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31:27–43PubMedCrossRefGoogle Scholar
  124. Mahadevan A, Lappé J, Rhyne RT, Cruz-Bermúdez ND, Marder E, Goy MF (2004) Nitric oxide inhibits the rate and strength of cardiac contractions in the lobster Homarus americanus by acting on the cardiac ganglion. J Neurosci 24:2813–2824PubMedCrossRefGoogle Scholar
  125. Mancuso C, Navarra P, Preziosi P (2010) Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem 113:563–575PubMedCrossRefGoogle Scholar
  126. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316PubMedCrossRefGoogle Scholar
  127. Maule AG, Shaw C, Halton DW, Thim L, Johnston CF, Fairweather I, Buchanan KD (1991) Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda:Cyclophyllidea). Parasitology 102:309–316CrossRefGoogle Scholar
  128. Maynard DM (1961a) Thoracic neurosecretory structures in Brachyura. I. Gross anatomy. Biol Bull 121:316–329CrossRefGoogle Scholar
  129. Maynard DM (1961b) Thoracic neurosecretory structures in Brachyura. II. Secretory neurons. Gen Comp Endocrinol 1:237–263PubMedCrossRefGoogle Scholar
  130. McCoole MD, Baer KN, Christie AE (2011) Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J Exp Biol 214:1773–1782PubMedCrossRefGoogle Scholar
  131. Messinger DI, Ngo CT, Cain SD, Christie AE (2004) Phylogenetic conservation of a tachykinin-containing neuroendocrine organ in the commissural ganglia of decapod crustaceans. Program No. 274.3. 2004 Neuroscience Meeting Planner. Society for Neuroscience, San Diego (online)Google Scholar
  132. Messinger DI, Kutz KK, Le T, Verley DR, Hsu YW, Ngo CT, Cain SD, Birmingham JT, Li L, Christie AE (2005) Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. J Exp Biol 208:3303–3319PubMedCrossRefGoogle Scholar
  133. Monigatti F, Gasteiger E, Bairoch A, Jung E (2002) The sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics 18:769–770PubMedCrossRefGoogle Scholar
  134. Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J Exp Biol 204:979–989PubMedGoogle Scholar
  135. Morris S, Ahern MD (2003) Regulation of urine reprocessing in the maintenance of sodium and water balance in the terrestrial Christmas Island red crab Gecarcoidea natalis investigated under field conditions. J Exp Biol 206:2869–2881PubMedCrossRefGoogle Scholar
  136. Morris S, Greenaway P, Adamczewska AM, Ahern MD (2000) Adaptations to a terrestrial existence in the robber crab Birgus latro L. IX. Hormonal control of post-renal urine reprocessing and salt balance in the branchial chamber. J Exp Biol 203:389–396PubMedGoogle Scholar
  137. Mulloney B, Hall WM (1991) Neurons with histamine-like immunoreactivity in the segmental and stomatogastric nervous systems of the crayfish Pacifastacus leniusculus and the lobster Homarus americanus. Cell Tissue Res 266:197–207PubMedCrossRefGoogle Scholar
  138. Nakatsuji T, Lee CY, Watson RD (2009) Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action. Comp Biochem Physiol A Mol Integr Physiol 152:139–148PubMedCrossRefGoogle Scholar
  139. Neupert S, Russell WK, Predel R, Russell DH, Strey OF, Teel PD, Nachman RJ (2009) The neuropeptidomics of Ixodes scapularis synganglion. J Proteomics 72:1040–1045PubMedCrossRefGoogle Scholar
  140. Nuss AB, Forschler BT, Crim JW, Brown MR (2008) Distribution of neuropeptide F-like immunoreactivity in the Eastern Subterranean termite, Reticulitermes flavipes. J Insect Sci 8:1–18PubMedCrossRefGoogle Scholar
  141. Nuss AB, Forschler BT, Crim JW, TeBrugge V, Pohl J, Brown MR (2010) Molecular characterization of neuropeptide F from the eastern subterranean termite Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Peptides 31:419–428PubMedCrossRefGoogle Scholar
  142. Ollivaux C, Gallois D, Amiche M, Boscaméric M, Soyez D (2009) Molecular and cellular specificity of post-translational aminoacyl isomerization in the crustacean hyperglycaemic hormone family. FEBS J 276:4790–4802PubMedCrossRefGoogle Scholar
  143. Ons S, Richter F, Urlaub H, Pomar RR (2009) The neuropeptidome of Rhodnius prolixus brain. Proteomics 9:788–792PubMedCrossRefGoogle Scholar
  144. Panksepp JB, Yue Z, Drerup C, Huber R (2003) Amine neurochemistry and aggression in crayfish. Microsc Res Tech 60:360–368PubMedCrossRefGoogle Scholar
  145. Passano LM (1951) The X-organ-sinus gland system neurosecretory system of crabs. Anat Rec 111:502Google Scholar
  146. Peck JH, Gaier E, Stevens E, Repicky S, Harris-Warrick RM (2006) Amine modulation of Ih in a small neural network. J Neurophysiol 96:2931–2940PubMedCrossRefGoogle Scholar
  147. Pedetta S, Kaczer L, Maldonado H (2010) Individual aggressiveness in the crab Chasmagnathus: influence in fight outcome and modulation by serotonin and octopamine. Physiol Behav 101:438–445PubMedCrossRefGoogle Scholar
  148. Pedrazzini T, Pralong F, Grouzmann E (2003) Neuropeptide Y: the universal soldier. Cell Mol Life Sci 60:350–377PubMedCrossRefGoogle Scholar
  149. Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A (2008) Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol 25:485–493PubMedCrossRefGoogle Scholar
  150. Predel R, Neupert S, Garczynski SF, Crim JW, Brown MR, Russell WK, Kahnt J, Russell DH, Nachman RJ (2010) Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res 9:2006–2015PubMedCrossRefGoogle Scholar
  151. Pulver SR, Marder E (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 451:79–90PubMedCrossRefGoogle Scholar
  152. Pulver SR, Thirumalai V, Richards KS, Marder E (2003) Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus. J Comp Neurol 462:400–414PubMedCrossRefGoogle Scholar
  153. Rajpara SM, Garcia PD, Roberts R, Eliassen JC, Owens DF, Maltby D, Myers RM, Mayeri E (1992) Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons. Neuron 9:505–513PubMedCrossRefGoogle Scholar
  154. Rao KR, Riehm JP (1993) Pigment-dispersing hormones. Ann NY Acad Sci 680:78–88PubMedCrossRefGoogle Scholar
  155. Rieger V, Harzsch S (2008) Embryonic development of the histaminergic system in the ventral nerve cord of the marbled crayfish (Marmorkrebs). Tissue Cell 40:113–126PubMedCrossRefGoogle Scholar
  156. Rodríguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A Mol Integr Physiol 146:661–671PubMedCrossRefGoogle Scholar
  157. Rogers M, Richmond JE, Sun P, Cooke IM (1997) GABA receptors in crab peptidergic secretory neurons and terminals, and their modulation by Ca2+. Soc Neurosci Abstr 23:375Google Scholar
  158. Roller L, Yamanaka N, Watanabe K, Daubnerová I, Zitnan D, Kataoka H, Tanaka Y (2008) The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1147–1157PubMedCrossRefGoogle Scholar
  159. Rubakhin SS, Sweedler JV (2010) A mass spectrometry primer for mass spectrometry imaging. Methods Mol Biol 656:21–49PubMedCrossRefGoogle Scholar
  160. Rubakhin SS, Hatcher NG, Monroe EB, Heien ML, Sweedler JV (2007) Mass spectrometric imaging of the nervous system. Curr Pharm Des 13:3325–3334PubMedCrossRefGoogle Scholar
  161. Sandeman DC, Benton JL, Beltz BS (2009) An identified serotonergic neuron reguates adult neurogenesis in the crustacean brain. Dev Neurobiol 69:530–545PubMedCrossRefGoogle Scholar
  162. Savage EE, Messinger DI, Trieu Q, Doan V, Verley DR, Birmingham JT, Christie AE (2006) Structural but not neurochemical conservation of the anterior cardiac neuron 1/2-anterior cardiac plexus (ACN1/2-ACP) neuroendocrine system of Cancer crabs: implications for differential sensitivities of the foregut musculature to FLRFamide. Program No. 129.6. 2006 Neuroscience Meeting Planner. Society for Neuroscience, Atlanta, GA (online)Google Scholar
  163. Saver MA, Wilkens JL, Syed NI (1999) In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas. J Neurophysiol 81:2964–2976PubMedGoogle Scholar
  164. Schneider H, Trimmer BA, Rapus J, Eckert M, Valentine DE, Kravitz EA (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 329:129–142PubMedCrossRefGoogle Scholar
  165. Scholz NL, Vente J de, Truman JW, Graubard K (2001) Neural network partitioning by NO and cGMP. J Neurosci 21:1610–1618PubMedGoogle Scholar
  166. Scholz NL, Labenia JS, Vente J de, Graubard K, Goy MF (2002) Expression of nitric oxide synthase and nitric oxide-sensitive guanylate cyclase in the crustacean cardiac ganglion. J Comp Neurol 454:158–167PubMedCrossRefGoogle Scholar
  167. Sharp JH, Wilcockson DC, Webster SG (2010) Identification and expression of mRNAs encoding bursicon in the plesiomorphic central nervous system of Homarus gammarus. Gen Comp Endocrinol 169:65–74PubMedCrossRefGoogle Scholar
  168. Siwicki KK, Beltz BS, Kravitz EA (1987) Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J Neurosci 7:522–532PubMedGoogle Scholar
  169. Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048PubMedGoogle Scholar
  170. Skiebe P (2003) Neuropeptides in the crayfish stomatogastric nervous system. Microsc Res Tech 60:302–312PubMedCrossRefGoogle Scholar
  171. Sosa MA, Baro DJ (2002) Amine effects on aggression in the giant tropical freshwater prawn Macrobrachium rosenbergii. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 143–155Google Scholar
  172. Stanek DM, Pohl J, Crim JW, Brown MR (2002) Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 23:1367–1378PubMedCrossRefGoogle Scholar
  173. Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299PubMedCrossRefGoogle Scholar
  174. Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:989–1009PubMedCrossRefGoogle Scholar
  175. Stein W, Eberle CC, Hedrich UB (2005) Motor pattern selection by nitric oxide in the stomatogastric nervous system of the crab. Eur J Neurosci 21:2767–2781PubMedCrossRefGoogle Scholar
  176. Stemmler EA, Cashman CR, Messinger DI, Gardner NP, Dickinson PS, Christie AE (2007a) High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders. Peptides 28:2104–2115PubMedCrossRefGoogle Scholar
  177. Stemmler EA, Hsu YW, Cashman CR, Messinger DI, Iglesia HO de la, Dickinson PS, Christie AE (2007b) Direct tissue MALDI-FTMS profiling of individual Cancer productus sinus glands reveals that one of three distinct combinations of crustacean hyperglycemic hormone precursor-related peptide (CPRP) isoforms are present in individual crabs. Gen Comp Endocrinol 154:184–192PubMedCrossRefGoogle Scholar
  178. Stollewerk A (2010) The water flea Daphnia— a “new” model system for ecology and evolution? J Biol 9:21PubMedGoogle Scholar
  179. Sullivan JM, Beltz BS (2005) Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. J Neurobiol 65:157–170PubMedCrossRefGoogle Scholar
  180. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA (2007) The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun 352:305–310PubMedCrossRefGoogle Scholar
  181. Thorsell A (2008) Central neuropeptide Y in anxiety- and stress-related behavior and in ethanol intake. Ann NY Acad Sci 1148:136–140PubMedCrossRefGoogle Scholar
  182. Turrigiano GG, Selverston AI (1991) Distribution of cholecystokinin-like immunoreactivity within the stomatogastric nervous systems of four species of decapod crustacea. J Comp Neurol 305:164–176PubMedCrossRefGoogle Scholar
  183. Van Herp F, Van Buggenum HJ (1979) Immunocytochemical localization of hyperglycemic hormone (HGH) in the neurosecretory system of the eyestalk of the crayfish Astacus leptodactylus. Experientia 35:1527–1529PubMedCrossRefGoogle Scholar
  184. Vázquez-Acevedo N, Rivera NM, Torres-González AM, Rullan-Matheu Y, Ruíz-Rodríguez EA, Sosa MA (2009) GYRKPPFNGSIFamide (Gly-SIFamide) modulates aggression in the freshwater prawn Macrobrachium rosenbergii. Biol Bull 217:313–326PubMedGoogle Scholar
  185. Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63PubMedCrossRefGoogle Scholar
  186. Verley DR, Doan V, Trieu Q, Messinger DI, Birmingham JT (2008) Characteristic differences in modulation of stomatogastric musculature by a neuropeptide in three species of Cancer crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:879–886PubMedCrossRefGoogle Scholar
  187. Walker RJ, Papaioannou S, Holden-Dye L (2010) A review of FMRFamide- and RFamide-like peptides in Metazoa. Invert Neurosci 9:111–153CrossRefGoogle Scholar
  188. Weaver RJ, Audsley N (2008) Neuropeptides of the beetle, Tenebrio molitor identified using MALDI-TOF mass spectrometry and deduced sequences from the Tribolium castaneum genome. Peptides 29:168–178PubMedCrossRefGoogle Scholar
  189. Webster SG, Dircksen H, Chung JS (2000) Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycaemic hormone and its precursor-related peptide. Cell Tissue Res 300:193–205PubMedCrossRefGoogle Scholar
  190. Wegener C, Gorbashov A (2008) Molecular evolution of neuropeptides in the genus Drosophila. Genome Biol 9:R131PubMedCrossRefGoogle Scholar
  191. Wilkens JL, Taylor HH (2003) The control of vascular resistance in the southern rock lobster, Jasus edwardsii (Decapoda: Palinuridae). Comp Biochem Physiol A Mol Integr Physiol 135:369–376PubMedCrossRefGoogle Scholar
  192. Wilson CH, Christie AE (2010) Distribution of C-type allatostatin (C-AST)-like immunoreactivity in the central nervous system of the copepod Calanus finmarchicus. Gen Comp Endocrinol 167:252–260PubMedCrossRefGoogle Scholar
  193. Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147–161PubMedCrossRefGoogle Scholar
  194. Wu Q, Zhao Z, Shen P (2005) Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat Neurosci 8:1350–1355PubMedCrossRefGoogle Scholar
  195. Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436PubMedCrossRefGoogle Scholar
  196. Zhang Y, Benton JL, Beltz BS (2011) 5-HT receptors mediate lineage-dependent effects of serotonin on adult neurogenesis in Procambarus clarkii. Neural Dev 6:2PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Neuroscience Program, John W. and Jean C. Boylan Center for Cellular and Molecular PhysiologyMount Desert Island Biological LaboratorySalisbury CoveUSA

Personalised recommendations