Cell and Tissue Research

, Volume 347, Issue 1, pp 117–128 | Cite as

TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis

  • Rohan Samarakoon
  • Jessica M. Overstreet
  • Stephen P. Higgins
  • Paul J. Higgins


Chronic kidney disease constitutes an increasing medical burden affecting 26 million people in the United States alone. Diabetes, hypertension, ischemia, acute injury, and urological obstruction contribute to renal fibrosis, a common pathological hallmark of chronic kidney disease. Regardless of etiology, elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling pathways initiated by angiotensin, glucose, and oxidative stress. Unilateral ureteral obstruction (UUO) is a useful and accessible model to identify mechanisms underlying the progression of renal fibrosis. Plasminogen activator inhibitor-1 (PAI-1), a major effector and downstream target of TGF-β1 in the progression of several clinically important fibrotic disorders, is highly up-regulated in UUO and causatively linked to disease severity. SMAD and non-SMAD pathways (pp60c-src, epidermal growth factor receptor [EGFR], mitogen-activated protein kinase, p53) are required for PAI-1 induction by TGF-β1. SMAD2/3, pp60c-src, EGFR, and p53 activation are each increased in the obstructed kidney. This review summarizes the molecular basis and translational significance of TGF-β1-stimulated PAI-1 expression in the progression of kidney disease induced by ureteral obstruction. Mechanisms discussed here appear to be operative in other renal fibrotic disorders and are relevant to the global issue of tissue fibrosis, regardless of organ site.


Fibrosis PAI-1 TGF-β1 p53 Transcription 


  1. Akiyoshi A, Ishii M, Nemoto N, Kawabata M, Aburatani H, Miyazono K (2001) Targets of transcriptional regulation by transforming growth factor-β: expression profile analysis using oligonucleotide arrays. Jpn J Cancer Res 92:257–268PubMedCrossRefGoogle Scholar
  2. Allen RR, Higgins PJ (2004) Plasminogen activator inhibitor inhibitor type-1 expression and the pathophysiology of TGF-β1-induced epithelial-to-mesenchymal transition. Recent Res Dev Physiol 2:355–366Google Scholar
  3. Allen RR, Qi L, Higgins PJ (2005) Upstream stimulatory factor regulates E box-dependent PAI-1 transcription in human epidermal keratinocytes. J Cell Physiol 201:156–165CrossRefGoogle Scholar
  4. Antonson P, Jakobsson T, Almlof T, Guldevall K, Steffensen KR, Gustafsson JA (2008) RAP250 is a coactivator in the transforming growth factor β signaling pathway that interacts with Smad2 and Smad3. J Biol Chem 283:8995–9001PubMedCrossRefGoogle Scholar
  5. Arany PR, Flanders KC, DeGraff W, Cook J, Mitchell JB, Roberts AB (2007) Absence of Smad3 confers radioprotection through modulation of ERK-MAPK in primary dermal fibroblasts. J Dermatol Sci 48:35–42PubMedCrossRefGoogle Scholar
  6. Asanuma H, Vanderbrink BA, Campbell MT, Hile KL, Zhang H, Meldrum DR, Meldrum KK (2010) Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fibrosis. J Surg Res 168:e51–59Google Scholar
  7. Bascands JL, Schanstra JP (2005) Obstructive nephropathy: insights from genetically engineered animals. Kidney Int 68:925–937PubMedCrossRefGoogle Scholar
  8. Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17PubMedCrossRefGoogle Scholar
  9. Boor P (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656PubMedCrossRefGoogle Scholar
  10. Bottinger EP (2007) TGF-β in renal injury and disease. Semin Nephrol 27:309–320PubMedCrossRefGoogle Scholar
  11. Bottinger EP, Bitzer M (2002) TGF-β signaling in renal disease. J Am Soc Nephrol 13:2600–2610PubMedCrossRefGoogle Scholar
  12. Chevalier RI, Kim A, Thornhill BA, Wolstenholme JT (1999) Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int 55:793–807PubMedCrossRefGoogle Scholar
  13. Chevalier RL, Forbes MS, Thornhill BA (2009) Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75:1145–1152PubMedCrossRefGoogle Scholar
  14. Chevalier RL, Thornhill BA, Forbes MS, Kiley SC (2010) Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol 25:687–697PubMedCrossRefGoogle Scholar
  15. Cho HJ, Kang JH, Kim T, Park KK, Kim CH, Lee IS, Min KS, Magae J, Nakajima H, Bae YS, Chang YC (2009) Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone. J Cell Biochem 107:335–344PubMedCrossRefGoogle Scholar
  16. Chuang-Tsai S, Sisson TH, Hattori N, Tsai CG, Subbotina NM, Hanson KE, Simon RH (2003) Reduction in fibrotic tissue formation in mice genetically deficient in plasminogen activator inhibitor-1. Am J Pathol 163:445–452PubMedCrossRefGoogle Scholar
  17. Cook HT (2010) The origin of renal fibroblasts and progression of kidney disease. Am J Pathol 176:22–24PubMedCrossRefGoogle Scholar
  18. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with SMADs. Cell 113:301–314PubMedCrossRefGoogle Scholar
  19. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843PubMedCrossRefGoogle Scholar
  20. Czekay R-P, Wilkins-Port CE, Higgins SP, Freytag J, Overstreet J, Klein RM, Higgins CE, Samarakoon R, Higgins PJ (2011) PAI-1: an integrator of cell signaling and migration. Int J Cell Biol (in press)Google Scholar
  21. Das F, Ghosh-Choudhury N, Venkatesan B, Li X, Mahimainathan L, Choudhury GG (2008) Akt kinase targets association of CBP with Smad 3 to regulate TGF-β-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 214:513–527PubMedCrossRefGoogle Scholar
  22. Degryse B, Neels JG, Czekay RP, Aertgeerts K, Kamikubo Y, Loskutoff DJ (2004) The low density lipoprotein receptor-related protein is a mitogenic receptor for plasminiogen activator inhibitor-1. J Biol Chem 279:22595–22604PubMedCrossRefGoogle Scholar
  23. Dendooven A, Ishola DA Jr, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA (2010) Oxidative stress in obstructive nephropathy. Int J Exp Path (in press)Google Scholar
  24. Dennier S, Itoh S, Vivien D, Dijke P ten, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF-β1-inducible elements in the promoter of human plasminogen activator inhibotor-type 1 gene. EMBO J 17:3091–3100CrossRefGoogle Scholar
  25. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584PubMedCrossRefGoogle Scholar
  26. Dupont S, Zacchigna L, Adorno M, Soligo S, Volpin D, Piccolo S, Cordenonsi M (2004) Convergence of p53 and TGF-β signaling networks. Cancer Lett 213:129–138PubMedCrossRefGoogle Scholar
  27. Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301PubMedCrossRefGoogle Scholar
  28. Eddy AA (2005) Progression of chronic kidney disease. Adv Chronic Kidney Dis 12:353–365PubMedCrossRefGoogle Scholar
  29. Eddy AA (2009) Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost 101:656–664PubMedGoogle Scholar
  30. Eddy AA, Fogo AB (2006) Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 17:2999–3012PubMedCrossRefGoogle Scholar
  31. Eikmans M, Baelde JJ, Heer E de, Bruijn JA (2003) ECM homeostasis in renal diseases: a genomic approach. J Pathol 200:526–536PubMedCrossRefGoogle Scholar
  32. Eitner F, Bucher E, Roeyen C van, Kunter U, Rong S, Seikrit C, Villa L, Boor P, Fredriksson L, Backstrom G, Eriksson U, Ostman A, Floege J, Ostendorf T (2008) PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J Am Soc Nephrol 19:281–289PubMedCrossRefGoogle Scholar
  33. Fan JM, Huang XR, Ng YY, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY (2001) Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro. Am J Kidney Dis 37:820–831PubMedCrossRefGoogle Scholar
  34. Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-b-induced transcriptional activation. Genes Dev 12:2153–2163PubMedCrossRefGoogle Scholar
  35. Fern RJ, Yesko CM, Thornhill BA, Kim HS, Smithies O, Chevalier RL (1999) Reduced angiotensinogen expression attenuates renal interstitial fibrosis in obstructive nephropathy in mice. J Clin Invest 103:39–46PubMedCrossRefGoogle Scholar
  36. Fisher DE, Parent LA, Sharp PA (1992) Myc/Max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove. Proc Natl Acad Sci USA 89:11779–11783PubMedCrossRefGoogle Scholar
  37. Floege J, Eitner F, Alpers CE (2008) A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 19:12–23PubMedCrossRefGoogle Scholar
  38. Francois H, Placier S, Flamant M, Tharaux PL, Chansel D, Dussaule JC, Chatziantoniou C (2004) Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. FASEB J 18:926–928PubMedGoogle Scholar
  39. Freytag J, Wilkins-Port CE, Higgins CE, Carlson JA, Noel A, Foidart JM, Higgins SP, Samarakoon R, Higgins PJ (2009) PAI-1 regulates the invasive phenotype in human cutaneous squamous cell carcinoma. J Oncol 2009:1–10CrossRefGoogle Scholar
  40. Freytag J, Wilkins-Port CE, Higgins CE, Higgins SP, Samarakoon R, Higgins PJ (2010) PAI-1 mediates the TGF-β1 + EGF-induced “scatter” response in transformed human keratinocytes. J Invest Dermatol 130:2179–2190PubMedCrossRefGoogle Scholar
  41. Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T, Suzuki S, Kitagawa M, Hishida A (2004) Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci USA 101:8687–8692PubMedCrossRefGoogle Scholar
  42. Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T, Suzuki S, Kitagawa M, Hishida A (2006) Ubiquitin-dependent degradation of SnoN and Ski is increased in renal fibrosis induced by obstructive injury. Kidney Int 69:1733–1740PubMedCrossRefGoogle Scholar
  43. Gagliardini E, Benigni A (2006) Role of anti-TGF-β antibodies in the treatment of renal injury. Cytokine Growth Factor Rev 17:89–96PubMedCrossRefGoogle Scholar
  44. Gonzalez J, Klein J, Chauhan SD, Neau E, Calise D, Nevoit C, Chaaya R, Miravette M, Delage C, Bascands J-L, Schanstra JP, Buffin-Meyer B (2009) Delayed treatment with plasminogen activator inhibitor-1 decoys reduces tubulointerstitial fibrosis. Exp Biol Med 234:1511–1518CrossRefGoogle Scholar
  45. Grande MT, Lopez-Novoa JM (2009) Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5:319–328PubMedCrossRefGoogle Scholar
  46. Grande MT, Perez-Barriocanal F, Lopez-Novoa JM (2010) Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 7:19CrossRefGoogle Scholar
  47. Gu G, Morrissey J, McCracken R, Tolley T, Liapis H, Klahr S (2001) Contributions of angiotensin II and tumor necrosis factor-α to the development of renal fibrosis. Am J Physiol Renal Physiol 280:F777–F785Google Scholar
  48. Ha H, Oh EY, Lee HB (2009) The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat Rev Nephrol 5:203–211PubMedCrossRefGoogle Scholar
  49. Higgins PJ (2006) TGF-β1-stimulated p21ras-ERK signaling regulates expression of the angiogenic SERPIN PAI-1. Recent Res Dev Biochem 7:31–45Google Scholar
  50. Higgins DF, Lappin DW, Kieran NE, Anders HL, Watson RW, Strutz F, Schlondorff D, Haase VH, Fitzpatrick JM, Godson C, Brady HR (2003) DNA oligonucleotide microarray technology identifies fisp-12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): modulation during epithelial-mesenchymal transition. Kidney Int 64:2079–2091Google Scholar
  51. Hruska KA (2002) Treatment of chronic tubulointerstitital disease: a new concept. Kidney Int 61:1911–1922PubMedCrossRefGoogle Scholar
  52. Hua X, Liu X, Ansari DO, Lodish HF (1998) Synergistic cooperation of TFE3 and smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 12:3084–3095PubMedCrossRefGoogle Scholar
  53. Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA (2003) A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 112:379–388PubMedGoogle Scholar
  54. Huang XR, Chung AC, Wang XJ, Lai KN, Lan HY (2008) Mice overexpressing latent TGF-β1 are protected against renal fibrosis in obstructive kidney disease. Am J Physiol Renal Physiol 295:F118–F127PubMedCrossRefGoogle Scholar
  55. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedCrossRefGoogle Scholar
  56. Hwang M, Kim HJ, Noh HJ, Chang YC, Chae YM, Kim KH, Jeon JP, Lee TS, Oh HK, Lee YS, Park KK (2006) TGF-β1 siRNA suppresses the tubulointerstitial fibrosis in the kidney of ureteral obstruction. Exp Mol Pathol 81:48–54PubMedCrossRefGoogle Scholar
  57. Ikushima H, Miyazono K (2010a) Cellular context-dependent "colors" of transforming growth factor-β signaling. Cancer Sci 101:306–312PubMedCrossRefGoogle Scholar
  58. Ikushima H, Miyazono K (2010b) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424PubMedCrossRefGoogle Scholar
  59. Inazaki K, Kanamaru Y, Kojima Y, Sueyoshi N, Okumura K, Kaneko K, Yamashiro Y, Ogawa H, Nakao A (2004) Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 66:597–604PubMedCrossRefGoogle Scholar
  60. Isaka Y, Tsujie M, Ando Y, Nakamura H, Kaneda Y, Imai E, Hori M (2000) Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 58:1885–1892PubMedCrossRefGoogle Scholar
  61. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S (1995) Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 47:1285–1294PubMedCrossRefGoogle Scholar
  62. Itoh S, Dijke P ten (2007) Negative regulation of TGF-β receptor/Smad signal transduction. Curr Opin Cell Biol 19:176–184PubMedCrossRefGoogle Scholar
  63. Iwano M, Neilson EG (2004) Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 13:279–284PubMedCrossRefGoogle Scholar
  64. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350PubMedGoogle Scholar
  65. Ju W, Eichinger F, Bitzer M, Oh J, McWeeney S, Berthier CC, Shedden K, Cohen CD, Henger A, Krick S, Kopp JB, Stoeckert CJ Jr, Dikman S, Schroppel B, Thomas DB, Schlondorff D, Kretzler M, Bottinger EP (2009) Renal gene and protein expression signatures for prediction of kidney disease progression. Am J Pathol 174:2073–2075PubMedCrossRefGoogle Scholar
  66. Kagami S, Border WA, Miller DE, Noble NA (1994) Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J Clin Invest 93:2431–2437PubMedCrossRefGoogle Scholar
  67. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784PubMedGoogle Scholar
  68. Kaneto H, Morrissey J, Klahr S (1993) Increased expression of TGF-β1 mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int 44:313–321PubMedCrossRefGoogle Scholar
  69. Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, Kohno N, Yorioka N (2009) PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-β. Lab Invest 89:47–58PubMedCrossRefGoogle Scholar
  70. Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18:689–699PubMedGoogle Scholar
  71. Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283:F861–F875PubMedGoogle Scholar
  72. Klein J, Gonzalez J, Miravete M, Caubet C, Chaaya R, Decramer S, Bandin F, Bascands J-L, Buffin-Meyer B, Joost P (2010) Congenital ureteropelvic junction obstruction: human disease and animal models. Int J Exp Pathol (in press)Google Scholar
  73. Kortlever RM, Brummelkamp TR, Meeteren LA van, Moolenaar WH, Bernards R (2008) Suppression of the p53-dependent replicative senescence response by lysophosphatidic acid signaling. Mol Cancer Res 6:1452–1460PubMedCrossRefGoogle Scholar
  74. Krag S, Danielsen CC, Carmeliet P, Nyengaard J, Wogensen L (2005) Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-β1-induced kidney disease. Kidney Int 68:2651–2666PubMedCrossRefGoogle Scholar
  75. Kunz C, Pebler S, Otte J, Ahe D von der(1995) Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 25:3710–3727CrossRefGoogle Scholar
  76. Kutz SM, Higgins CE, Samarakoon R, Higgins SP, Allen RR, Qi L, Higgins PJ (2006) TGF-β1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res 312:1093–1105PubMedCrossRefGoogle Scholar
  77. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 14:1535–1548PubMedCrossRefGoogle Scholar
  78. Lautrette A, Li S, Alili R, Sunnarborg SW, Burtin M, Lee DC, Friedlander G, Terzi F (2005) Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11:867–874PubMedCrossRefGoogle Scholar
  79. Ledbetter S, Kurtzberg L, Doyle S, Pratt BM (2000) Renal fibrosis in mice treated with human recombinant transforming growth factor-β2. Kidney Int 58:2367–2376PubMedCrossRefGoogle Scholar
  80. Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY (2002) Smad7 inhibits fibrotic effect of TGF-β on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 13:1464–1472PubMedCrossRefGoogle Scholar
  81. Lin J, Patel SR, Cheng X, Cho EA, Levitan I, Ullenbruch M, Phan SH, Park JM, Dressler GR (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11:387–393PubMedCrossRefGoogle Scholar
  82. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627PubMedCrossRefGoogle Scholar
  83. Liu Y (2006) Renal fibrosis: new insights in to pathogenesis and therapeutics. Kidney Int 69:213–217PubMedCrossRefGoogle Scholar
  84. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222PubMedCrossRefGoogle Scholar
  85. Liu S, Shi L, Wang S (2007) Oversexpression of upstream stimulatory factor 2 accelerates diabetic kidney injury. Am J Physiol Renal Physiol 293:F1727–F1735PubMedCrossRefGoogle Scholar
  86. Ma LJ, Jha S, Ling H, Pozzi A, Ledbetter S, Fogo AB (2004) Divergent effects of low versus high dose anti-TGF-beta antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int 65:106–115PubMedCrossRefGoogle Scholar
  87. Manucha W (2007) Biochemical-molecular markers in unilateral uretal obstruction. Biocell 31:1–12PubMedGoogle Scholar
  88. Masaki T, Foti R, Hill PA, Ikezumi Y, Atkins RC, Nikolic-Paterson DJ (2003) Activation of the ERK pathway preceeds tubular proliferation in the obstructed rat kidney. Kidney Int 63:1256–1264PubMedCrossRefGoogle Scholar
  89. Massagué J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  90. Matsuo S, Lopez-Guisa JM, Cai X, Okamura DM, Alpers CE, Bumgarner RE, Peters MA, Zhang G, Eddy AA (2005) Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int 67:2221–2238PubMedCrossRefGoogle Scholar
  91. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950PubMedCrossRefGoogle Scholar
  92. Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P, Ju W, Bottinger EP, Lan HY (2010) Smad2 protects agains TGF-β/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487PubMedCrossRefGoogle Scholar
  93. Mezzano SA, Aros CA, Droguett A, Burgos ME, Ardiles LG, Flores CA, Carpio D, Vio CP, Ruiz-Ortega M, Egido J (2003) Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney Int Suppl 86:S39–S45PubMedCrossRefGoogle Scholar
  94. Milliat F, Sabourin JC, Tarlet G, Holler V, Deutsch E, Buard V, Tamarat R, Atfi A, Benderitter M, François A (2008) Essential role of plasminogen activator inhibitor type-1 in radiation enteropathy. Am J Pathol 172:691–701PubMedCrossRefGoogle Scholar
  95. Mitu G, Hirschberg R (2008) Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front Biosci 13:4726–4739PubMedCrossRefGoogle Scholar
  96. Miyajima A, Chen JC, Lawrence C, Ledbetter S, Soslow RA, Stern J, Jha S, Pigato J, Lemer ML, Poppas DP, Vaughan ED, Felsen D (2000) Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 58:2301–2313PubMedCrossRefGoogle Scholar
  97. Miyazono K (2009) Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad B Phys Biol Sci 85:314–323CrossRefGoogle Scholar
  98. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, Kalinski H, Skaliter R, Erlich S, Feinstein E (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20:1754–1764PubMedCrossRefGoogle Scholar
  99. Moller JC, Skiver E, Olsen S, Maunsbach AB (1984) Ultrastructural analysis of human proximal tubules and cortical interstitium in chronic renal disease (hydronephrosis). Virchows Arch A Pathol Anat Histopathol 402:209–237PubMedCrossRefGoogle Scholar
  100. Moon JA, Kim HT, Cho IS, Sheen YY, Kim DK (2006) IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int 70:1234–1243PubMedCrossRefGoogle Scholar
  101. Moustakis A, Heldin CH (2009) The regulation of TGF-β signal transduction. Development 136:3699–3714CrossRefGoogle Scholar
  102. Murphy M, Crean J, Brazil DP, Sadlier D, Martin F, Godson C (2008) Regulation and consequences of differential gene expression in diabetic kidney disease. Biochem Soc Trans 36:941–945PubMedCrossRefGoogle Scholar
  103. Naito T, Masaki T, Nikolic-Paterson DJ, Tanji C, Yorioka N, Kohno N (2004) Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-β1. Am J Physiol Renal Physiol 286:F278–F287PubMedCrossRefGoogle Scholar
  104. Nicholas SB, Aguiniga E, Ren Y, Kim J, Wong J, Govindarajan N, Noda M, Wang W, Kawano Y, Collins A, Hsueh WA (2005) Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int 67:1297–1307PubMedCrossRefGoogle Scholar
  105. Oda T, Jung YO, Kim HS, Cai X, López-Guisa JM, Ikeda Y, Eddy AA (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 60:587–596PubMedCrossRefGoogle Scholar
  106. Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863PubMedGoogle Scholar
  107. Park HC, Yasuda K, Ratliff B, Stoessel A, Sharkovska Y, Yamamoto I, Jasmin JF, Bachmann S, Lisanti MP, Chander P, Goligorsky MS (2010a) Posobstructive regeneration of kidney is derailed when surge in renal stem cells during course of unilateral ureteral obstruction is halted. Am J Physiol Renal Physiol 298:F357–F364PubMedCrossRefGoogle Scholar
  108. Park HC, Yasuda K, Kuo MC, Ni J, Ratliff BB, Chander PN, Goligorsky MS (2010b) Renal capsule as stem cell niche. Am J Physiol Renal Physiol (in press)Google Scholar
  109. Patel SR, Dressler GR (2005) BMP7 signaling in renal development and disease. Trends Mol Med 11:512–518PubMedCrossRefGoogle Scholar
  110. Picard N, Baum O, Vogetseder A, Kaissling B, Le Hir M (2008) Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol 130:141–155PubMedCrossRefGoogle Scholar
  111. Piccolo S (2008) p53 regulation orchestrates the TGF-β response. Cell 133:767–769PubMedCrossRefGoogle Scholar
  112. Pimentel JL Jr, Sundell CL, Wang S, Kopp JB, Montero A, Martinez-Maldonado M (1995) Role of angiotensin II in the expression and regulation of transforming growth factor-β in obstructive nephropathy. Kidney Int 48:1233–1246PubMedCrossRefGoogle Scholar
  113. Providence KM, Higgins SP, Mullen A, Battista A, Samarakoon R, Higgins CE, Wilkins-Port CE, Higgins PJ (2008) SERPINE1 (PAI-1) is deposited into keratinocyte migration "trails" and required for optimal monolayer wound repair.Arch Dermatol Res 300:303–310PubMedCrossRefGoogle Scholar
  114. Puri TS, Shakaib MI, Chang A, Mathew L, Olayinka O, Minto AW, Saray M, Hack BK, Quigg RJ (2010) Chronic kidney disease induced in mice by reversible unilateral ureteral obstruction is dependent on genetic background. Am J Physiol Renal Physiol 298:F1024–F1032PubMedCrossRefGoogle Scholar
  115. Qi L, Higgins PJ (2003) Use of chromatin immunoprecipitation to identify E box-binding transcription factors in the promoter of the growth state-regulated human PAI-1 gene. Recent Res Dev Mol Biol 1:1–12Google Scholar
  116. Qi L, Allen RR, Lu Q, Higgins CE, Garone R, Staiano-Coico L, Higgins PJ (2006a) PAI-1 transcriptional regulation during the G0→G1 transition in human epidermal keratinocytes. J Cell Biochem 99:495–507PubMedCrossRefGoogle Scholar
  117. Qi W, Chen X, Poronnik P, Pollock CA (2006b) The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 38:1–5PubMedCrossRefGoogle Scholar
  118. Ricardo SD, Goor H van, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530PubMedCrossRefGoogle Scholar
  119. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412PubMedCrossRefGoogle Scholar
  120. Rohatgi R, Flores D (2010) Intratubular hydrodynamic forces influence tubulointerstitial fibrosis in the kidney. Curr Opin Nephrol Hypertens 19:65–71PubMedCrossRefGoogle Scholar
  121. Roufosse C, Bou-Gharios G, Prodromidi E, Alexakis C, Jeffrey R, Khan S, Otto WR, Alter J, Poulsom R, Cook HT (2006) Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J Am Soc Nephrol 17:775–782PubMedCrossRefGoogle Scholar
  122. Sadlier DM, Connolly SB, Kieran NE, Roxburgh S, Brazil DP, Kairaitis L, Wang Y, Harris DC, Doran P, Brady HR (2004) Sequential extracellular matrix-focused and baited-global cluster analysis of serial transcriptomic profiles identifies candidate modulators of renal tubulointerstitial fibrosis in murine adriamycin-induced nephropathy. J Biol Chem 279:29670–29680PubMedCrossRefGoogle Scholar
  123. Samarakoon R, Higgins PJ (2008) Integration of non-SMAD and SMAD signaling in TGF-β1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost 100:976–983PubMedGoogle Scholar
  124. Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ (2005) Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp 60c-src/MEK-dependent. J Cell Physiol 204:236–246PubMedCrossRefGoogle Scholar
  125. Samarakoon R, Higgins SP, Higgins CE, Higgins PJ (2008) TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscles requires pp 60c-src/EGFRY845 and Rho/ROCK signaling. J Mol Cell Cardiol 44:527–538PubMedCrossRefGoogle Scholar
  126. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494PubMedGoogle Scholar
  127. Satoh M, Kashihara N, Yamasaki Y, Maruyama K, Okamoto K, Maeshima Y, Sugiyama H, Sugaya T, Murakami K, Makino H (2001) Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 12:317–325PubMedGoogle Scholar
  128. Schreiner GF, Harris KP, Purkerson ML, Klahr S (1988) Immunological aspects of acute ureteral obstruction: immune cell infiltrate in the kidney. Kidney Int 34:487–493PubMedCrossRefGoogle Scholar
  129. Seo JY, Park J, Yu MR, Kim YS, Ha H, Lee HB (2009) Positive feedback loop between plasminogen activator inhibitor-1 and transforming growth factor-β1 during renal fibrosis in diabetes. Am J Nephrol 30:481–490PubMedCrossRefGoogle Scholar
  130. Seseke F, Thelen P, Ringert RH (2004) Characterization of an animal model of spontaneous congenital unilateral obstructive uropathy by cDNA microarray analysis. Eur Urol 45:374–381PubMedCrossRefGoogle Scholar
  131. Shi L, Nikolic D, Liu S, Lu H, Wang S (2009) Activation of renal rennin-angiotensin system in upstream stimulatory factor 2 transgenic mice. Am J Physiol Renal Physiol 296:F257–F265PubMedCrossRefGoogle Scholar
  132. Shin GT, Kim WH, Yim H, Kim MS, Kim H (2005) Effects of suppressing intrarenal angiotensinogen on renal transforming growth factor-β1 expression in acute ureteral obstruction. Kidney Int 67:897–908PubMedCrossRefGoogle Scholar
  133. Silverstein DM, Travis BR, Thornhill BA, Schurr JS, Kolls JK, Leung JC, Chevalier RL (2003) Altered expression of immune modulator and structural genes in neonatal unilateral ureteral obstruction. Kidney Int 64:25–35PubMedCrossRefGoogle Scholar
  134. Simonsson M, Kanduri M, Gronroos E, Heldin CH, Ericsson J (2006) The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281:39870–39880PubMedCrossRefGoogle Scholar
  135. Stahl PJ, Felsen D (2001) Transforming growth factor-β, basement membrane, and epithelial-mesenchymal transdifferentiation: implications for fibrosis in kidney disease. Am J Pathol 159:1187–1192PubMedCrossRefGoogle Scholar
  136. Strutz F, Neilson EG (2003) New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol 24:459–476PubMedCrossRefGoogle Scholar
  137. Sutaria PM, Ohebshalom M, McCaffrey TA, Vaughan ED Jr, Felsen D (1998) Transforming growth factor-β receptor types I and II are expressed in renal tubules and are increased after chronic unilateral ureteral obstruction. Life Sci 62:1965–1972PubMedCrossRefGoogle Scholar
  138. Tan R, Zhang J, Tan X, Zhang X, Yang J, Liu Y (2006) Downregulation of SnoN expression in obstructive nephropathy is mediated by an enhanced ubiquitin-dependent degradation. J Am Soc Nephrol 17:2781–2791PubMedCrossRefGoogle Scholar
  139. Tanaka M, Endo S, Okuda T, Economides AN, Valenzuela DM, Murphy AJ, Robertson E, Sakurai T, Fukatsu A, Yancopoulos GD, Kita T, Yanagita M (2008) Expression of BMP-7 and USAG-1 (a BMP antagonist) in kidney development and injury. Kidney Int 73:181–191PubMedCrossRefGoogle Scholar
  140. Terzi F, Burtin M, Hekmati M, Federici P, Grimber G, Briand P, Friedlander G (2000) Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J Clin Invest 106:225–234PubMedCrossRefGoogle Scholar
  141. Truong LD, Gaber L, Eknoyan G (2011) Obstructive uropathy. Contrib Nephrol 169:311–326PubMedCrossRefGoogle Scholar
  142. Tu AW, Luo K (2007) Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor β response. J Biol Chem 282:21187–21196PubMedCrossRefGoogle Scholar
  143. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431PubMedCrossRefGoogle Scholar
  144. Wang S, Hirschberg R (2003) BMP7 antagonizes TGF-beta-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284:F1006–F1013PubMedGoogle Scholar
  145. Wang S, Wilkes MC, Leof EB, Hirschberg R (2005) Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. FASEB J 19:1–11PubMedCrossRefGoogle Scholar
  146. Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z (2007) Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 293:F1282–F1291PubMedCrossRefGoogle Scholar
  147. Wolf G (2006) Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-β pathway. Kidney Int 70:1914–1919PubMedGoogle Scholar
  148. Wolf G, Mueller E, Stahl RA, Ziyadeh FN (1993) Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-β. J Clin Invest l92:1366–1372CrossRefGoogle Scholar
  149. Yabuki A, Maeda M, Matsumoto M, Kamimura R, Masuyama T, Suzuki S (2005) SAMP1/Sku as a murine model for tubulointerstitial nephritis: a study using unilateral ureteral obstruction. Exp Anim 54:53–60PubMedCrossRefGoogle Scholar
  150. Yamashita S, Maeshima A, Nojima Y (2005) Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneys. J Am Soc Nephrol 16:2044–2051PubMedCrossRefGoogle Scholar
  151. Yanagita M, Okuda T, Endo S, Tanaka M, Takahashi K, Sugiyama F, Kunita S, Takahashi S, Fukatsu A, Yanagisawa M, Kita T, Sakurai T (2006) Uterine sensitization-associated gene-1 (USAG-1), a novel BMP antagonist expressed in the kidney, accelerates tubular injury. J Clin Invest 116:70–79PubMedCrossRefGoogle Scholar
  152. Yang J, Zhang X, Li Y, Liu Y (2003) Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-β1 signaling. J Am Soc Nephrol 14:3167–3177PubMedCrossRefGoogle Scholar
  153. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543PubMedCrossRefGoogle Scholar
  154. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci USA 98:6686–6691PubMedCrossRefGoogle Scholar
  155. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968PubMedCrossRefGoogle Scholar
  156. Zeisberg M, Shah AA, Kalluri R (2005) Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 280:8094–8100PubMedCrossRefGoogle Scholar
  157. Zhang M, Fraser D, Phillips A (2006) ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-β1 autoinduction in proximal tubular epithelial cells. Am J Pathol 169:1282–1293PubMedCrossRefGoogle Scholar
  158. Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21:31–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rohan Samarakoon
    • 1
  • Jessica M. Overstreet
    • 1
  • Stephen P. Higgins
    • 1
  • Paul J. Higgins
    • 1
  1. 1.Center for Cell Biology and Cancer Research (MC-165)Albany Medical CollegeAlbanyUSA

Personalised recommendations