Cell and Tissue Research

, Volume 344, Issue 3, pp 415–433 | Cite as

Cell proliferation and cytoarchitectural remodeling during spinal cord reconnection in the fresh-water turtle Trachemys dorbignyi

  • María Inés Rehermann
  • Federico Fernando Santiñaque
  • Beatriz López-Carro
  • Raúl E. Russo
  • Omar Trujillo-Cenóz
Regular Article


In fresh-water turtles, the bridge connecting the proximal and caudal stumps of transected spinal cords consists of regenerating axons running through a glial cellular matrix. To understand the process leading to the generation of the scaffold bridging the lesion, we analyzed the mitotic activity triggered by spinal injury in animals maintained alive for 20–30 days after spinal cord transection. Flow cytometry and bromodeoxyuridine (BrdU)-labeling experiments revealed a significant increment of cycling cells around the lesion epicenter. BrdU-tagged cells maintained a close association with regenerating axons. Most dividing cells expressed the brain lipid-binding protein (BLBP). Cells with BrdU-positive nuclei expressed glial fibrillary acidic protein. As spinal cord regeneration involves dynamic cell rearrangements, we explored the ultra-structure of the bridge and found cells with the aspect of immature oligodendrocytes forming an embryonic-like microenvironment. These cells supported and ensheathed regenerating axons that were recognized by immunocytological and electron-microscopical procedures. Since functional recovery depends on proper impulse transmission, we examined the anatomical axon-glia relationships near the lesion epicenter. Computer-assisted three-dimensional models revealed helical axon-glial junctions in which the intercellular space appeared to be reduced (5–7 nm). Serial-sectioning analysis revealed that fibril-containing processes provided myelinating axon sheaths. Thus, disruption of the ependymal layer elicits mitotic activity predominantly in radial glia expressing BLBP on the lateral aspects of the ependyma. These cycling cells seem to migrate and contribute to the bridge providing the main support and sheaths for regenerating axons.


Spinal cord Cell proliferation Regeneration Radial glia Re-myelination Turtle, Trachemys dorbignyi (Chelonia) 



We thank Dr. A. Caputi for statistical advice and Mrs. G. Fabbiani for her kind and efficient technical assistance.


  1. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247PubMedCrossRefGoogle Scholar
  2. Adrian EK Jr, Walker BE (1962) Incorporation of thymidine H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 21:597–609PubMedCrossRefGoogle Scholar
  3. Armstrong J, Zhang L, McClelland AD (2003) Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey. Exp Neurol 180:156–166PubMedCrossRefGoogle Scholar
  4. Beattie MS, Bresnahan JC, Lopate G (1990) Metamorphosis alter the response to spinal transection in Xenopus laevis frogs. J Neurobiol 21:1108–1122PubMedCrossRefGoogle Scholar
  5. Bittman K, Owens DF, Kriegstein AR, Lo Turco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044PubMedGoogle Scholar
  6. Bruzzone R, Dermietzel R (2006) Structure and function of gap junctions in the developing brain. Cell Tissue Res 326:239–248PubMedCrossRefGoogle Scholar
  7. Butler EG, Ward MB (1965) Reconstitution of the spinal cord following ablation in urodele larvae. J Exp Zool 160:47–65PubMedCrossRefGoogle Scholar
  8. Chevallier S, Landry M, Nagy F, Cabelguen JM (2004) Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii. Eur J Neurosci 20:1995–2007PubMedCrossRefGoogle Scholar
  9. Choi BH, Kim RC (1985) Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J Neuroimmunol 8:215–235PubMedCrossRefGoogle Scholar
  10. Choi BH, Kim RC, Lapham LW (1983) Do radial glia give rise to both astroglial and oligodendroglial cells? Dev Brain Res 8:119–130CrossRefGoogle Scholar
  11. Coggeshall RE, Youndblood CS (1983) Recovery from spinal transection in fish: regrowth of axons post the transection. Neurosci Lett 38:227–231PubMedCrossRefGoogle Scholar
  12. Davis BM, Ayers JL, Koran L, Carlson J, Anderson MC, Simpson SB Jr (1990) Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis. Exp Neurol 108:198–213PubMedCrossRefGoogle Scholar
  13. Davies JA, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822PubMedGoogle Scholar
  14. Dervan AG, Roberts BL (2003) Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 458:293–306PubMedCrossRefGoogle Scholar
  15. Egar M, Simpson SB, Singer M (1970) The growth and differentiation of the regenerating spinal cord of the lizard Anolis carolinensis. J Morphol 131:131–152PubMedCrossRefGoogle Scholar
  16. Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907PubMedCrossRefGoogle Scholar
  17. Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908PubMedCrossRefGoogle Scholar
  18. Fernández A, Radmilovich M, Trujillo-Cenóz O (2002) Neurogenesis and gliogenesis in the spinal cord of turtles. J Comp Neurol 458:293–306Google Scholar
  19. Ferretti P, Whalley K (2008) Successful neural regeneration in amniotes: the developing chick spinal cord. Cell Mol Life Sci 65:45–53PubMedCrossRefGoogle Scholar
  20. Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132:1951–1959PubMedCrossRefGoogle Scholar
  21. Fox MA, Afshari FS, Alexander JK, Colello RJ, Fuss B (2006) Growth conelike sensorimotor structures are characteristics features of postmigratory, premyelinating oligodendrocytes. Glia 53:563–566PubMedCrossRefGoogle Scholar
  22. Gibbs KM, Szaro BG (2006) Regeneration of descending projections in Xenopus laevis tadpole demonstrated by retrograde double labeling. Brain Res 1088:68–72PubMedCrossRefGoogle Scholar
  23. Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual system with a new method of staining neurons and their processes in fixed tissue. Development 101:697–713PubMedGoogle Scholar
  24. Gray EG, Guillery RW (1961) The basis for silver staining of synapses of the mammalian spinal cord: a light and electron microscope study. J Physiol (Lond) 157:581–588Google Scholar
  25. Guest JD, Ed H, Bunge RP (2005) Demyelination and Schwann cell response adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–393PubMedCrossRefGoogle Scholar
  26. Guillery RW, Herrup K (1997) Quantification without pontification. J Comp Neurol 386:2–7PubMedCrossRefGoogle Scholar
  27. Hall SM, Williams PL (1971) The distribution of electron dense tracers in peripheral nerve fibers. J Cell Sci 8:541–555PubMedGoogle Scholar
  28. Hasegawa K, Yu-Wen C, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M (2004) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193:394–410CrossRefGoogle Scholar
  29. Hasan SJ, Keirstead HS, Muir GD, Steeves JD (1993) Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick. J Neurosci 73:492–507Google Scholar
  30. Hirano M, Goldman JE (1988) Gliogenesis in the rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21:155–167PubMedCrossRefGoogle Scholar
  31. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970PubMedCrossRefGoogle Scholar
  32. Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228PubMedGoogle Scholar
  33. Horky L, Galimi F, Gage F, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498:525–538PubMedCrossRefGoogle Scholar
  34. Houle JD, Jin Y (2001) Chronically injured supraspinal neurons only exhibit modest axonal dieback in response to a cervical hemisection lesion. Exp Neurol 169:208–217PubMedCrossRefGoogle Scholar
  35. Huang Q, Zhou D, DiFiglia M (1992) Neurobiotin, a useful neuroanatomical tracer for in vivo anterograde, retrograde and transneuronal tract-tracing and for in vitro labelling of neurons. J Neurosci Methods 41:31–43PubMedCrossRefGoogle Scholar
  36. Iseda T, Nishio T, Kawaguchi S, Yamanoto M, Kawasaki T, Wakisaka S (2004) Spontaneous regeneration of the corticospinal tract after transection in young rats: a key role of reactive astrocytes in making favorable and unfavorable conditions for regeneration. Neuroscience 126:365–374PubMedCrossRefGoogle Scholar
  37. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9:1506–1511PubMedCrossRefGoogle Scholar
  38. Keirstead HS, Hasan SJ, Muir GD, Steeves JD (1992) Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proc Natl Acad Sci USA 89:11664–11668PubMedCrossRefGoogle Scholar
  39. Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351PubMedCrossRefGoogle Scholar
  40. Landis SC (1983) Neuronal growth cones. Annu Rev Physiol 45:567–580PubMedCrossRefGoogle Scholar
  41. Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47PubMedCrossRefGoogle Scholar
  42. Li Y, Raisman G (1995) Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 134:102–111PubMedCrossRefGoogle Scholar
  43. Liu L, Persson J, Svensson M, Aldskogius H (1998) Glial cell responses, complement and clustering in the central nervous system following dorsal root transection. Glia 23:221–238PubMedCrossRefGoogle Scholar
  44. Liu L, Rudin M, Kozlova E (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131:64–73PubMedCrossRefGoogle Scholar
  45. Lorente de Nó R (1921) La regeneración de la médula espinal en las larvas de batracios. Trab Lab Invest Biol Univ Madr 19:147–183Google Scholar
  46. Meletis K, Barnabé-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisén J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182PubMedCrossRefGoogle Scholar
  47. Mchedlishvili L, Epperlein H, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093PubMedCrossRefGoogle Scholar
  48. Michel ME, Reier PJ (1979) Axonal-ependymal association during early regeneration in the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548PubMedCrossRefGoogle Scholar
  49. Mothe AJ, Tator CH (2005) Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131:177–187PubMedCrossRefGoogle Scholar
  50. Nordlander R (1987) Axonal growth cones in the developing amphibian spinal cord. J Comp Neurol 263:485–496PubMedCrossRefGoogle Scholar
  51. Novotny GEK (1979) Synaptic ring images after silver impregnation. Cell Tissue Res 204:141–145PubMedCrossRefGoogle Scholar
  52. Piatt J (1955) Regeneration of the spinal cord in the salamander. J Exp Zool 129:177–207CrossRefGoogle Scholar
  53. Radmilovich M, Fernández A, Trujillo-Cenóz O (2003) Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. J Exp Biol 206:3085–3093PubMedCrossRefGoogle Scholar
  54. Ramón y Cajal SR (1913–1914) Estudios sobre la degeneración y regeneración del sistema nervioso, TI-II. Degeneración y regeneración de los centros nerviosos. Moya, MadridGoogle Scholar
  55. Rehermann MI, Marichal N, Russo RE, Trujillo-Cenóz O (2009) Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol 515:197–214PubMedCrossRefGoogle Scholar
  56. Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 19–35Google Scholar
  57. Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker C, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci 28:8510–8516PubMedCrossRefGoogle Scholar
  58. Rovainen CM (1976) Regeneration of Müller and Mauthner axons after spinal cord transection in larval lampreys. J Comp Neurol 168:545–554PubMedCrossRefGoogle Scholar
  59. Russo RE, Reali C, Radmilovich M, Fernández A, Trujillo-Cenóz O (2008) Conexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 28:3298–3309PubMedCrossRefGoogle Scholar
  60. Salzer JL (2003) Polarized domains of myelinated axons. Neuron 40:297–318PubMedCrossRefGoogle Scholar
  61. Sanes DH, Reh TA, Harris WA (2006) Development of the nervous system, 2nd edn. Elsevier/Academic Press, San DiegoGoogle Scholar
  62. Schnapp E, Kragl M, Rubin L, Tanaka E (2005) Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132:3243–3253PubMedCrossRefGoogle Scholar
  63. Sellers DL, Maris DO, Horner PJ (2009) Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. J Neurosci 29:6722–67333PubMedCrossRefGoogle Scholar
  64. Shibuya S, Miyamoto O, Itano T, Mori S, Norimatsu H (2003) Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats. Glia 42:172–183PubMedCrossRefGoogle Scholar
  65. Shifman MI, Jin LQ, Selzer M (2007) Regeneration in the lamprey spinal cord. In: Becker CG, Becker T (eds) Model organisms in spinal cord regeneration. Wiley-VCH, Weinheim, pp 229–262Google Scholar
  66. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156PubMedCrossRefGoogle Scholar
  67. Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17:533–540PubMedCrossRefGoogle Scholar
  68. Singer M, Nordlander RTH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blue print hypothesis of neural pathway patterning. J Comp Neurol 185:1–22PubMedCrossRefGoogle Scholar
  69. Sjöstrand F (1967) Electron microscopy of cells and tissues, vol 1. Academic Press, London New YorkGoogle Scholar
  70. Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notopthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 121–149Google Scholar
  71. Takeda A, Goris RC, Funakoshi K (2007) Regeneration of descending projections to the spinal cord neurons after spinal hemisection in the goldfish. Brain Res 1155:17–23PubMedCrossRefGoogle Scholar
  72. Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713–723PubMedCrossRefGoogle Scholar
  73. Tennyson VM (1970) The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J Cell Biol 44:62–79PubMedCrossRefGoogle Scholar
  74. Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643PubMedCrossRefGoogle Scholar
  75. Trujillo-Cenóz O, Fernández A, Radmilovich M, Reali C, Russo R (2007) Cytological organization of the central gelatinosa in the turtle spinal cord. J Comp Neurol 502:291–308PubMedCrossRefGoogle Scholar
  76. Vessal M, Aycock A, Tess Garton M, Ciferri M, Darian-Smith C (2007) Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci 26:2777–2794PubMedCrossRefGoogle Scholar
  77. Williams RM, Bastiani J, Lia B, Chalupa LM (1988) Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve. J Comp Neurol 246:32–69CrossRefGoogle Scholar
  78. Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cord. Science 206:344–347PubMedCrossRefGoogle Scholar
  79. Zhang F, Clarke JDW, Ferretti P (2000) FGF-2 up-regulation and proliferation of neural progenitors in the regenerating amphibian spinal cord in vivo. Dev Biol 225:381–391PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • María Inés Rehermann
    • 1
  • Federico Fernando Santiñaque
    • 2
  • Beatriz López-Carro
    • 2
  • Raúl E. Russo
    • 1
  • Omar Trujillo-Cenóz
    • 1
  1. 1.Departamento de Neurofisiología Celular y MolecularMontevideoUruguay
  2. 2.Servicio de Clasificación Celular y Citometría de Flujo, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE)MontevideoUruguay

Personalised recommendations