Cell and Tissue Research

, Volume 343, Issue 3, pp 475–481 | Cite as

Molecular evolution and functional characterization of the orexigenic peptide 26RFa and its receptor in vertebrates

  • Kazuyoshi Ukena
  • Hubert Vaudry
  • Jérôme Leprince
  • Kazuyoshi Tsutsui
Mini Review

Abstract

Several neuropeptides possessing the RFamide motif at their C-termini (designated RFamide peptides) have been characterized in the hypothalamus of a variety of vertebrates. To date, five groups of the RFamide peptide family have been shown to exert several important neuroendocrine, behavioral, sensory, and autonomic functions. Since the discovery of the 26-amino acid RFamide peptide (termed 26RFa) from the frog brain, 26RFa has been shown to exert orexigenic activity in mammals and to be a ligand of the previously identified orphan G-protein-coupled receptor GPR103. Recently, 26RFa and its cognate receptor GPR103 have been identified in the brain of birds. This mini-review summarizes the advances in the identification, localization, and functions of 26RFa and its cognate receptor GPR103 in vertebrates and highlights recent progress made in birds.

Keywords

Neuropeptide 26RFa G-protein-coupled receptor Hypothalamus Food intake Vertebrates 

References

  1. Ahmed S, Harvey S (2002) Ghrelin: a hypothalamic GH-releasing factor in domestic fowl (Gallus domesticus). J Endocrinol 172:117–125PubMedCrossRefGoogle Scholar
  2. Baribault H, Danao J, Gupte J, Yang L, Sun B, Richards W, Tian H (2006) The G-protein-coupled receptor GPR103 regulates bone formation. Mol Cell Biol 26:709–717PubMedCrossRefGoogle Scholar
  3. Bruzzone F, Lectez B, Tollemer H, Leprince J, Dujardin C, Rachidi W, Chatenet D, Baroncini M, Beauvillain JC, Vallarino M, Vaudry H, Chartrel N (2006) Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord. J Neurochem 99:616–627PubMedCrossRefGoogle Scholar
  4. Bruzzone F, Lectez B, Alexandre D, Jégou S, Mounien L, Tollemer H, Chatenet D, Leprince J, Vallarino M, Vaudry H, Chartrel N (2007) Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat. J Comp Neurol 503:573–591PubMedCrossRefGoogle Scholar
  5. Chartrel N, Dujardin C, Leprince J, Desrues L, Tonon MC, Cellier E, Cosette P, Jouenne T, Simonnet G, Vaudry H (2002) Isolation, characterization, and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta. J Comp Neurol 448:111–127PubMedCrossRefGoogle Scholar
  6. Chartrel N, Dujardin C, Anouar Y, Leprince J, Decker A, Clerens S, Do Régo JC, Vandesande F, Llorens-Cortes C, Costentin J, Beauvillain JC, Vaudry H (2003) Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci USA 100:15247–15252PubMedCrossRefGoogle Scholar
  7. Chartrel N, Bruzzone F, Dujardin C, Leprince J, Tollemer H, Anouar Y, Vallarino M, Costentin J, Vaudry H (2005) Identification of 26RFa from frog brain: a novel hypothalamic neuropeptide with orexigenic activity in mammals. Ann N Y Acad Sci 1040:80–83PubMedCrossRefGoogle Scholar
  8. Chartrel N, Tsutsui K, Costentin J, Vaudry H (2006a) The RFamide-related peptides. In: Kastin AJ (ed) Handbook of biologically actives peptides. Elsevier, Amsterdam, pp 779–786CrossRefGoogle Scholar
  9. Chartrel N, Bruzzone F, Leprince J, Tollemer H, Anouar Y, Do Régo JC, Ségalas-Milazzo I, Guilhaudis L, Cosette P, Jouenne T, Simonnet G, Vallarino M, Beauvillain JC, Costentin J, Vaudry H (2006b) Structure and functions of the novel hypothalamic RFamide neuropeptides R-RFa and 26RFa in vertebrates. Peptides 27:1110–1120PubMedCrossRefGoogle Scholar
  10. Do Régo JC, Leprince J, Chartrel N, Vaudry H, Costentin J (2006) Behavioral effects of 26RFamide and related peptides. Peptides 27:2715–2721PubMedCrossRefGoogle Scholar
  11. Egido EM, Hernández R, Leprince J, Chartrel N, Vaudry H, Marco J, Silvestre RA (2007) 26RFa, a novel orexigenic neuropeptide, inhibits insulin secretion in the rat pancreas. Peptides 28:725–730PubMedCrossRefGoogle Scholar
  12. Fukusumi S, Yoshida H, Fujii R, Murayama M, Komatsu H, Habata Y, Shintani Y, Hinuma S, Fujino M (2003) A new peptidic ligand and its receptor regulating adrenal function in rats. J Biol Chem 278:46387–46395PubMedCrossRefGoogle Scholar
  13. Furuse M, Tachibana T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM (2001) Intracerebroventricular injection of ghrelin and growth hormone releasing factor inhibits food intake in neonatal chicks. Neurosci Lett 301:123–126PubMedCrossRefGoogle Scholar
  14. Jiang Y, Luo L, Gustafson EL, Yadav D, Laverty M, Murgolo N, Vassileva G, Zeng M, Laz TM, Behan J, Qiu P, Wang L, Wang S, Bayne M, Greene J, Monsma F Jr, Zhang FL (2003) Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J Biol Chem 278:27652–27657PubMedCrossRefGoogle Scholar
  15. Kampe J, Wiedmer P, Pfluger PT, Castaneda TR, Burget L, Mondala H, Kerr J, Liaw C, Oldfield BJ, Tschöp MH, Bagnol D (2006) Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Res 1119:133–149PubMedCrossRefGoogle Scholar
  16. Lectez B, Jeandel L, El-Yamani FZ, Arthaud S, Alexandre D, Mardargent A, Jégou S, Mounien L, Bizet P, Magoul R, Anouar Y, Chartrel N (2009) The orexigenic activity of the hypothalamic neuropeptide 26RFa is mediated by the neuropeptide Y and proopiomelanocortin neurons of the arcuate nucleus. Endocrinology 150:2342–2350PubMedCrossRefGoogle Scholar
  17. Liu Y, Zhang Y, Li S, Huang W, Liu X, Lu D, Meng Z, Lin H (2009) Molecular cloning and functional characterization of the first non-mammalian 26RFa/QRFP orthologue in goldfish, Carassius auratus. Mol Cell Endocrinol 303:82–90PubMedCrossRefGoogle Scholar
  18. Moriya R, Sano H, Umeda T, Ito M, Takahashi Y, Matsuda M, Ishihara A, Kanatani A, Iwaasa H (2006) RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. Endocrinology 147:2916–2922PubMedCrossRefGoogle Scholar
  19. Navarro VM, Fernández-Fernández R, Nogueiras R, Vigo E, Tovar S, Chartrel N, Le Marec O, Leprince J, Aguilar E, Pinilla L, Dieguez C, Vaudry H, Tena-Sempere M (2006) Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. J Physiol (Lond) 573:237–249CrossRefGoogle Scholar
  20. Osugi T, Ukena K, Sower SA, Kawauchi H, Tsutsui K (2006) Evolutionary origin and divergence of PQRFamide peptides and LPXRFamide peptides in the RFamide peptide family. Insights from novel lamprey RFamide peptides. FEBS J 273:1731–1743PubMedCrossRefGoogle Scholar
  21. Patel SR, Murphy KG, Thompson EL, Patterson M, Curtis AE, Ghatei MA, Bloom SR (2008) Pyroglutamylated RFamide peptide 43 stimulates the hypothalamic-pituitary-gonadal axis via gonadotropin-releasing hormone in rats. Endocrinology 149:4747–4754PubMedCrossRefGoogle Scholar
  22. Price DA, Greenberg MJ (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science 197:670–671PubMedCrossRefGoogle Scholar
  23. Primeaux SD, Blackmon C, Barnes MJ, Braymer HD, Bray GA (2008) Central administration of the RFamide peptides, QRFP-26 and QRFP-43, increases high fat food intake in rats. Peptides 29:1994–2000PubMedCrossRefGoogle Scholar
  24. Saito ES, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M (2005) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept 125:201–208PubMedCrossRefGoogle Scholar
  25. Takayasu S, Sakurai T, Iwasaki S, Teranishi H, Yamanaka A, Williams SC, Iguchi H, Kawasawa YI, Ikeda Y, Sakakibara I, Ohno K, Ioka RX, Murakami S, Dohmae N, Xie J, Suda T, Motoike T, Ohuchi T, Yanagisawa M, Sakai J (2006) A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci USA 103:7438–7443PubMedCrossRefGoogle Scholar
  26. Tsutsui K (2009) A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): biosynthesis, mode of action and functional significance. Prog Neurobiol 88:76–88PubMedCrossRefGoogle Scholar
  27. Tsutsui K, Ukena K (2006) Hypothalamic LPXRF-amide peptides in vertebrates: identification, localization and hypophysiotropic activity. Peptides 27:1121–1129PubMedCrossRefGoogle Scholar
  28. Tsutsui K, Bentley GE, Bedecarrats G, Osugi T, Ubuka T, Kriegsfeld LJ (2010a) Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function. Front Neuroendocrinol 31:284–295PubMedCrossRefGoogle Scholar
  29. Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H (2010b) Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 22:716–727PubMedGoogle Scholar
  30. Ukena K, Tsutsui K (2005) A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. Mass Spectrom Rev 24:469–486PubMedCrossRefGoogle Scholar
  31. Ukena K, Tachibana T, Iwakoshi-Ukena E, Saito Y, Minakata H, Kawaguchi R, Osugi T, Tobari Y, Leprince J, Vaudry H, Tsutsui K (2010) Identification, localization, and function of a novel avian hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-coupled receptor-103. Endocrinology 151:2255–2264PubMedCrossRefGoogle Scholar
  32. Walker RJ, Papaioannou S (2009) A review of FMRFamide- and RFamide-like peptides in metazoa. Invert Neurosci 9:111–153PubMedCrossRefGoogle Scholar
  33. Yamamoto T, Wada T, Miyazaki R (2008) Analgesic effects of intrathecally administered 26RFa, an intrinsic agonist for GPR103, on formalin test and carrageenan test in rats. Neuroscience 157:214–222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kazuyoshi Ukena
    • 1
  • Hubert Vaudry
    • 2
  • Jérôme Leprince
    • 2
  • Kazuyoshi Tsutsui
    • 3
  1. 1.Section of Behavioral Sciences, Graduate School of Integrated Arts and SciencesHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, European Institute for Peptide Research (IFRMP 23)University of RouenMont-Saint-AignanFrance
  3. 3.Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science of Waseda UniversityWaseda UniversityTokyoJapan

Personalised recommendations