Advertisement

Cell and Tissue Research

, Volume 343, Issue 3, pp 467–473 | Cite as

Implications of autophagy for glomerular aging and disease

  • Thomas Weide
  • Tobias B. Huber
Mini Review

Abstract

Glomerular diseases lead to a progressive decline in renal function and account for the vast majority of end-stage kidney diseases. Injury and loss of glomerular podocytes are common determining factors of glomerular disease progression and renal failure. Podocytes are a primary glomerular target of toxic, immune, metabolic, and oxidant stress, but little is known of the factors that counteract cellular stress signaling pathways. This review focuses on recent findings that identify autophagy as a critical homeostatic and quality control mechanism maintaining glomerular homeostasis.

Keywords

Autophagy Glomerular Aging Disease Renal function 

Notes

Acknowledgements

We apologize to those colleagues whose work has not been cited because of imposed restrictions on article length. We thank Beate Vollenbröker, Wibke Bechtel, and Björn Hartleben for critically reading the manuscript and all members of our laboratories for their support and helpful discussions.

References

  1. Anderson S, Brenner BM (1987) The aging kidney: structure, function, mechanisms, and therapeutic implications. J Am Geriatr Soc 35:590–593PubMedGoogle Scholar
  2. Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T, Kominami E, Tomino Y (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17:1165–1167PubMedGoogle Scholar
  3. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701PubMedCrossRefGoogle Scholar
  4. Botelho RJ (2009) Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis. Bioessays 31:1127–1136PubMedCrossRefGoogle Scholar
  5. Brandis A, Bianchi G, Reale E, Helmchen U, Kühn K (1986) Age-dependent glomerulosclerosis and proteinuria occurring in rats of the Milan normotensive strain and not in rats of the Milan hypertensive strain. Lab Invest 55:234–243PubMedGoogle Scholar
  6. Chan EY, Tooze SA (2009) Evolution of Atg1 function and regulation. Autophagy 5:758–765PubMedGoogle Scholar
  7. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, et al (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72PubMedCrossRefGoogle Scholar
  8. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining "clean" cells. Autophagy 1:131–140PubMedCrossRefGoogle Scholar
  9. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657PubMedCrossRefGoogle Scholar
  10. Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13PubMedCrossRefGoogle Scholar
  11. Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878PubMedCrossRefGoogle Scholar
  12. Ferguson CJ, Lenk GM, Meisler MH (2010) PtdIns(3,5)P2 and autophagy in mouse models of neurodegeneration. Autophagy 6:170-171PubMedCrossRefGoogle Scholar
  13. Floege J, Hackmann B, Kliem V, Kriz W, Alpers CE, Johnson RJ, et al (1997) Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: a podocyte disease. Kidney Int 51:230–243PubMedCrossRefGoogle Scholar
  14. Ganley IG, Lam H du, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305PubMedCrossRefGoogle Scholar
  15. Gurley SB, Coffman TM (2010) An IRKO in the Podo: impaired insulin signaling in podocytes and the pathogenesis of diabetic nephropathy. Cell Metab 12:311-312PubMedCrossRefGoogle Scholar
  16. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  17. Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120:1084-1096PubMedCrossRefGoogle Scholar
  18. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991PubMedCrossRefGoogle Scholar
  19. Juhász G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP (2008) The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655–666PubMedCrossRefGoogle Scholar
  20. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003PubMedCrossRefGoogle Scholar
  21. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728PubMedCrossRefGoogle Scholar
  22. Kaplan C, Pasternack B, Shah H, Gallo G (1975) Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol 80:227–234PubMedGoogle Scholar
  23. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2:330–335PubMedCrossRefGoogle Scholar
  24. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedCrossRefGoogle Scholar
  25. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N, Rubinsztein DC, Thumm M, Tooze SA (2010) A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6Google Scholar
  26. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedCrossRefGoogle Scholar
  27. Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12:836-841PubMedCrossRefGoogle Scholar
  28. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedCrossRefGoogle Scholar
  29. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594PubMedCrossRefGoogle Scholar
  30. Lemley KV, Lafayette RA, Safai M, Derby G, Blouch K, Squarer A, Myers BD (2002) Podocytopenia and disease severity in IgA nephropathy. Kidney Int 61:1475–1485PubMedCrossRefGoogle Scholar
  31. Longatti A, Tooze SA (2009) Vesicular trafficking and autophagosome formation. Cell Death Differ 16:956–965PubMedCrossRefGoogle Scholar
  32. McCray BA, Taylor JP (2008) The role of autophagy in age-related neurodegeneration. Neurosignals 16:75–84PubMedCrossRefGoogle Scholar
  33. Meyer TW, Bennett PH, Nelson RG (1999) Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42:1341–1344PubMedCrossRefGoogle Scholar
  34. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823-830PubMedCrossRefGoogle Scholar
  35. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedCrossRefGoogle Scholar
  36. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRefGoogle Scholar
  37. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178PubMedCrossRefGoogle Scholar
  38. Neufeld TP (2010) TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 22:157-168PubMedCrossRefGoogle Scholar
  39. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307PubMedGoogle Scholar
  40. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedCrossRefGoogle Scholar
  41. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786PubMedCrossRefGoogle Scholar
  42. Sato S, Kitamura H, Adachi A, Sasaki Y, Ghazizadeh M (2006) Two types of autophagy in the podocytes in renal biopsy specimens: ultrastructural study. J Submicrosc Cytol Pathol 38:167–174PubMedGoogle Scholar
  43. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310-322PubMedCrossRefGoogle Scholar
  44. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218PubMedCrossRefGoogle Scholar
  45. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12:831-835PubMedCrossRefGoogle Scholar
  46. Vollenbröker B, George B, Wolfgart M, Saleem MA, Pavenstädt H, Weide T (2009) mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol 296:F418–F426PubMedCrossRefGoogle Scholar
  47. Walker S, Chandra P, Manifava M, Axe E, Ktistakis NT (2008) Making autophagosomes: localized synthesis of phosphatidylinositol 3-phosphate holds the clue. Autophagy 4:1093–1096PubMedGoogle Scholar
  48. Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R, et al (2010) Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 12:329-340PubMedCrossRefGoogle Scholar
  49. White KE, Bilous RW, Marshall SM, El Nahas M, Remuzzi G, Piras G, De Cosmo S, Viberti G (2002) Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes 51:3083–3089PubMedCrossRefGoogle Scholar
  50. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214PubMedCrossRefGoogle Scholar
  51. Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG, Wooten MC (2006) Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease. J Biomed Biotechnol 2006:62079PubMedGoogle Scholar
  52. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814-822PubMedCrossRefGoogle Scholar
  53. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38:768-774Google Scholar
  54. Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, et al (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci USA 104:17518–17523PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division of Molecular NephrologyUniversity Hospital MuensterMuensterGermany
  2. 2.Renal DivisionUniversity Hospital FreiburgFreiburgGermany
  3. 3.Centre for Biological Signalling Studies (bioss)Albert Ludwig’s UniversityFreiburgGermany
  4. 4.Department of Internal Medicine D, Division of Molecular NephrologyUniversity Hospital MuensterMuensterGermany

Personalised recommendations