Cell and Tissue Research

, Volume 343, Issue 2, pp 343–355 | Cite as

Revisiting the anatomy of the central nervous system of a hemimetabolous model insect species: the pea aphid Acyrthosiphon pisum

  • Martin Kollmann
  • Sebastian Minoli
  • Joël Bonhomme
  • Uwe Homberg
  • Joachim Schachtner
  • Denis Tagu
  • Sylvia Anton
Regular Article

Abstract

Aphids show a marked phenotypic plasticity, producing asexual or sexual and winged or wingless morphs depending on environmental conditions and season. We describe here the general structure of the brain of various morphs of the pea aphid Acyrthosiphon pisum. This is the first detailed anatomical study of the central nervous system of an aphid by immunocytochemistry (synapsin, serotonin, and several neuropeptides), ethyl-gallate staining, confocal laser scanning microscopy, and three-dimensional reconstructions. The study has revealed well-developed optic lobes composed of lamina, medulla, and lobula complex. Ocelli are only present in males and winged parthenogenetic females. The central complex is well-defined, with a central body divided into two parts, a protocerebral bridge, and affiliated lateral accessory lobes. The mushroom bodies are ill-defined, lacking calyces, and only being visualized by using an antiserum against the neuropeptide orcokinin. The antennal lobes contain poorly delineated glomeruli but can be clearly visualized by performing antennal backfills. On the basis of our detailed description of the brain of winged and wingless parthenogenetic A. pisum females, an anatomical map is now available that should improve our knowledge of the way that these structures are involved in the regulation of phenotypic plasticity.

Keywords

Insect nervous system Brain Neuropil Phenotypic plasticity Aphids Acyrtophison pisum (Insecta) 

Abbreviations

5HT

Serotonin

a

Anterior

AL

Antennal lobe

AN

Antennal nerve

Asn13-OK

Asn13-orcokinin

CB

Central body

CBL

Lower division of the central body

CBU

Upper division of the central body

CNS

Central nervous system

d

Dorsal

DL

Dorsal lobe

G

Glomerulus

GA

Glutaraldehyde

l

Lateral

La

Lamina

LAL

Lateral accessory lobe

LALcom

Lateral accessory lobe commissure

Lodm

Lobula dorso-median lobe

Loi

Lobula inner lobe

Loo

Lobula outer lobe

LoX

Lobula complex

Mas-AT

Manduca sexta allatotropin

MB

Mushroom body

Me

Medulla

MeD1 D2

Medulla divisions

mL

Mushroom body median lobe

NGS

Normal goat serum

OL

Optic lobe

PB

Protocerebral bridge

PBS

Phosphate-buffered saline

PFA

Paraformaldehyde

Pea-PVK-II

Periplaneta americana periviscerokinin II

RT

Room temperature

SEG

Subesophageal ganglion

TGM

Thoracic ganglionic mass

TrX

Triton X

v

Ventral

vL

Mushroom body ventral lobe

Supplementary material

441_2010_1099_MOESM1_ESM.pdf (880 kb)
Fig. S1Brain of the aphid Acyrthosiphon pisum (orientation bar: d dorsal, l lateral, p posterior). Insets top right Position of the depicted brain area. a Single optical section showing synapsin immunostaining of a winged parthenogenetic female. An inner (Loi), outer (Loo), and dorso-median (Lodm) lobe can be distinguished within the lobula complex. b Optical section of a synapsin-immunostained brain of a winged parthenogenetic animal showing the most anterior part of the protocerebral bridge (PB). The two arms of the PB touch each other at the midline of the brain. c Synapsin immunostaining of a wingless parthenogenetic animal showing the upper (CBU) and lower (CBL) divisions of the central body. The border between the two divisions is marked by a layer of highly synapsin-immunoreactive fibers (arrowheads). d Differences in serotonin-immunoreactive profiles between the CBU and CBL of a winged parthenogenetic animal. Whereas the CBU shows strong serotonin immunostaining, the CBL is almost devoid of immunoreactive fibers. e The DC 0 antibody labeled up to four large cell bodies at the dorsal border of the brain in each hemisphere (arrows). Only two cell bodies are visible in this stack of optical sections (maximum intensity projection); they send neurites into the protocerebrum (arrowheads) in a wingless parthenogenetic female. Note that the fibers project into an area dorsal to the CB (stars). Bar 20 μm (PDF 879 kb)

References

  1. Akalal DBJ, Wilson CF, Zong L, Tanaka NK, Ito K, Davis RL (2006) Roles of Drosophila mushroom body neurons in olfactory learning and memory. Learn Mem 13:659–668CrossRefPubMedGoogle Scholar
  2. Anderson M, Bromley AK (1987) Sensory system. In: Minks AK, Harrewjin P (eds) Aphids, their biology, natural enemies and control, vol 1. Elsevier, Amsterdam, pp 153–162Google Scholar
  3. Barrozo RB, Couton L, Lazzari CR, Insausti TC, Minoli SA, Fresquet N, Rospars JP, Anton S (2009) Antennal pathways in the central nervous system of a blood-sucking bug, Rhodnius prolixus. Arthropod Struct Dev 38:101–110CrossRefPubMedGoogle Scholar
  4. Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492:1–19CrossRefPubMedGoogle Scholar
  5. Bungart D, Dircksen H, Keller R (1994) Quantitative determination and distribution of the myotropic neuropeptide orcokinin in the nervous system of astacidean crustaceans. Peptides 15:393–400CrossRefPubMedGoogle Scholar
  6. Dacks AM, Christensen TA, Hildebrand JG (2006) Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. J Comp Neurol 498:727–746CrossRefPubMedGoogle Scholar
  7. Dreyer D, Vitt H, Dippel F, Goetz B, el Jundi B, Kollmann M, Huetteroth W, Schachtner J (2010) 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Front Systems Neurosci 4:3Google Scholar
  8. Eckert M, Herbert Z, Pollak E, Molnar L, Predel R (2002) Identical cellular distribution of all abundant neuropeptides in the major abdominal neurohemal system of an insect (Periplaneta americana). J Comp Neurol 452:264–275CrossRefPubMedGoogle Scholar
  9. Farris SM (2005) Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect. Evol Dev 7:150–159CrossRefPubMedGoogle Scholar
  10. Farris SM, Sinakevitch I (2003) Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct Dev 32:79–101CrossRefPubMedGoogle Scholar
  11. Farris SM, Strausfeld NJ (2003) A unique mushroom body substructure common to basal cockroaches and to termites. J Comp Neurol 456:305–320CrossRefPubMedGoogle Scholar
  12. Farris SM, Abrams AI, Strausfeld NJ (2004) Development and morphology of class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. J Comp Neurol 474:325–339CrossRefPubMedGoogle Scholar
  13. Fiala A, Müller U, Menzel R (1999) Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long–term memory formation in the honeybee, Apis mellifera. J Neurosci 19:10125–10134PubMedGoogle Scholar
  14. Gabriel CD (1965) Neurosekretion bei Aphiden. Wiss Z Univ Rostock 14:619–631Google Scholar
  15. Gallot A, Rispe C, Leterme N, Gauthier JP, Jaubert-Possamai S, Tagu D (2010) Cuticular proteins and seasonal photoperiodism in aphids. Insect Biochem Mol Biol 40:235–240CrossRefPubMedGoogle Scholar
  16. Graichen E (1936) Das Zentralnervensystem von Nepa cinerea mit Einschluss des sympathischen Nervensystems. Zool Jahrb Abt Anat Ontog Tiere 61:195–238Google Scholar
  17. Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366CrossRefGoogle Scholar
  18. Hanström B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere. Springer, BerlinGoogle Scholar
  19. Hanström B (1930) Über das Gehirn von Termops nevadensis und Phyllium pulchrifolium nebst Beitragen zur Phylogenie der Corpora pedunculata der Arthropoden. Z Morphol Oekol Tiere 19:732–773CrossRefGoogle Scholar
  20. Hardie J (1987a) Neurosecretory and endocrine systems. In: Minks AK, Harrewjin P (eds) Aphids, their biology, natural enemies and control, vol 1. Elsevier, Amsterdam, pp 139–152Google Scholar
  21. Hardie J (1987b) Nervous system. In: Minks AK, Harrewjin P (eds) Aphids, their biology, natural enemies and control, vol 1. Elsevier, Amsterdam, pp 131–138Google Scholar
  22. Heisenberg M (1998) What do the mushroom bodies do for the insect brain? An introduction. Learn Mem 5:1–10PubMedGoogle Scholar
  23. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275CrossRefPubMedGoogle Scholar
  24. Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30CrossRefPubMedGoogle Scholar
  25. Hofer S, Dircksen H, Tollbäck P, Homberg U (2005) Novel insect orcokinins: characterization and neuronal distribution in the brains of selected dicondylian insects. J Comp Neurol 490:57–71CrossRefPubMedGoogle Scholar
  26. Homberg U (1991) Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry. J Comp Neurol 2:245–254CrossRefGoogle Scholar
  27. Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–209CrossRefPubMedGoogle Scholar
  28. Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208CrossRefPubMedGoogle Scholar
  29. Homberg U (2008) Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev 37:347–362CrossRefPubMedGoogle Scholar
  30. Homberg U, Mantague RA, Hildebrand JG (1988) Anatomy of the antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281CrossRefPubMedGoogle Scholar
  31. Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx moth Manduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity. Cell Tissue Res 259:401–419CrossRefPubMedGoogle Scholar
  32. Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, Baur JE, Wu D, Roper SD (2005) Mouse taste buds use serotonin as a neurotransmitter. J Neurosci 25:843–847CrossRefPubMedGoogle Scholar
  33. Huybrechts J, Bonhomme J, Minoli S, Prunier-Leterme N, Dombrovsky A, Abdel-Latief M, Robichon A, Veenstra JA, Tagu D (2010) Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19 (Suppl 2):87–95CrossRefPubMedGoogle Scholar
  34. The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313. doi:10.1371/journal.pbio.1000313 CrossRefGoogle Scholar
  35. Kataoka H, Toschi A, Li JP, Carney L, Schooley DA, Kramer SJ (1989) Identification of an allatotropin from adult Manduca sexta. Science 243:1481–1483CrossRefPubMedGoogle Scholar
  36. Kenyon CF (1896) The meaning and structure of the so-called mushroom bodies of the hexapod brain. Am Nat 30:643–650CrossRefGoogle Scholar
  37. Kim M-Y, Lee BH, Kwon D, Kang H, Nässel DR (1998) Distribution of tachykinin-related neuropeptide in the developing central nervous system of the moth Spodoptera litura. Cell Tissue Res 294:351–365CrossRefPubMedGoogle Scholar
  38. Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165PubMedGoogle Scholar
  39. Kristoffersen L, Hansson BS, Anderbrant O, Larsson MC (2008) Aglomerular hemipteran antennal lobes—basic neuroanatomy of a small nose. Chem Senses 33:771–778CrossRefPubMedGoogle Scholar
  40. Kühnle K (1913) Vergleichende Untersuchungen über das Gehirn, die Kopfnerven, und Kopfdrüsen des gemeinen Ohrwurms (Forficula auricularia). Jena Z Naturwiss 50:147–276Google Scholar
  41. Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145CrossRefPubMedGoogle Scholar
  42. Lane ME, Kalderon D (1993) Genetic investigation of cAMP–dependent protein kinase function in Drosophila development. Genes Dev 7:1229–1243CrossRefPubMedGoogle Scholar
  43. Le Trionnaire G, Jaubert S, Sabater-Muñoz B, Benedetto A, Bonhomme J, Prunier-Leterme N, Martinez-Torres D, Simon JC, Tagu D (2007) Seasonal photoperiodism regulates the expression of cuticular and signalling protein genes in the pea aphid. Insect Biochem Mol Biol 37:1094–1102CrossRefPubMedGoogle Scholar
  44. Le Trionnaire G, Hardie J, Jaubert-Possamai S, Simon JC, Tagu D (2008) Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biol Cell 100:441–451CrossRefPubMedGoogle Scholar
  45. Le Trionnaire G, Francis F, Jaubert-Possamai S, Bonhomme J, De Pauw E, Gauthier JP, Haubruge E, Legeai F, Leterme N, Simon JC, Tanguy S, Tagu D (2009) Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid. BMC Genomics 10:456CrossRefPubMedGoogle Scholar
  46. Lees AD (1964) The location of the photoperiodic receptors in the aphid Megoura viciae Buckton. J Exp Biol 41:119–133PubMedGoogle Scholar
  47. Leise EMM, Mulloney B (1986) The osmium-ethyl gallate procedure is superior to silver impregnations for mapping neuronal pathways. Brain Res 367:265–272CrossRefPubMedGoogle Scholar
  48. Mizunami M (1994) Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits. Adv Insect Physiol 25:151–265CrossRefGoogle Scholar
  49. Muren JE, Lundquist CT, Nässel D (1995) Abundant distribution of locustatachykinin-like peptide in the nervous system and intestine of the cockroach Leucophaea maderae. Philos Trans R Soc Lond Biol 348:423–444CrossRefPubMedGoogle Scholar
  50. Nässel DR (1993) Insect myotropic peptides: differential distribution of locustatachykinin- and leucokinin-like immunoreactive neurons in the locust brain. Cell Tissue Res 274:27–40CrossRefPubMedGoogle Scholar
  51. Pathak JPN (1972) Histology of the brain and optic lobes of Halys dentata F. (Hemiptera: Pentatomidae). Int J Insect Morphol Embryol 1:253–266CrossRefGoogle Scholar
  52. Pflugfelder O (1937) Vergleichend-anatomische experimentelle und embryologische Untersuchungen über das Nervensystem und die Sinnesorgane der Rhynchoten. Zoologica 34:1–102Google Scholar
  53. Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299CrossRefGoogle Scholar
  54. Schürmann FW, Erber J (1990) FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light and electron microscopical study. Neuroscience 38:797–807CrossRefPubMedGoogle Scholar
  55. Simon JC, Pfrender M, Tollrian R, Tagu D, Colbourne J (2010) Genomics of environementally-induced phenotypes in two extremely plastic arthropods. J Hered (in press)Google Scholar
  56. Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New YorkGoogle Scholar
  57. Staudacher EM, Gebhardt M, Dürr V (2005) Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv Insect Physiol 32:49–205CrossRefGoogle Scholar
  58. Steel CG (1977) The neurosecretory system in the aphid Megoura viciae, with reference to unusual features associated with long distance transport of neurosecretion. Gen Comp Endocrinol 31:307–322CrossRefPubMedGoogle Scholar
  59. Steel CG, Lees AD (1977) The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. J Exp Biol 67:117–135PubMedGoogle Scholar
  60. Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in D. melanogaster. Cell Tissue Res 262:9–34CrossRefPubMedGoogle Scholar
  61. Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256CrossRefGoogle Scholar
  62. Strausfeld NJ, Hansen L, Lie YS, Gomez RSS, Ito K (1998) Evolution, discovery, and interpretation of arthropod mushroom bodies. Learn Mem 5:11–37PubMedGoogle Scholar
  63. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291CrossRefPubMedGoogle Scholar
  64. Strauss R (2002) The central complex and the genetic dissection of locomotor behavior. Curr Opin Neurobiol 12:633–638CrossRefPubMedGoogle Scholar
  65. Tagu D, Klingler JP, Moya A, Simon JC (2008) Early progress in aphid genomics and consequences for plant-aphid interactions studies. Mol Plant Microbe Interact 34:809–822Google Scholar
  66. Tilley SB, Weaver RJ, Isaac RE (2000) Allatostatin-like and AKH/HrTH-like peptides in the aphid Megoura viciae. Gen Comp Endocrinol 117:355–365CrossRefPubMedGoogle Scholar
  67. Utz S, Huetteroth W, Voemel M, Schachtner J (2008) Mas–allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: distribution, time course, developmental regulation, and colocalization with other neuropeptides. Dev Neurobiol 68:123–142CrossRefPubMedGoogle Scholar
  68. Veenstra JA, Hagedorn HH (1993) Sensitive enzyme immunoassay for Manduca allatotropin and the existence of an allatotropin–immunoreactive peptide in Periplaneta americana. Arch Insect Biochem 23:99–109CrossRefGoogle Scholar
  69. Zhou J-J, Vieira FG, He X-L, Smadja C, Liu R, Rozas J, Field LM (2010) Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 19:113–122CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Kollmann
    • 1
  • Sebastian Minoli
    • 2
    • 4
  • Joël Bonhomme
    • 3
  • Uwe Homberg
    • 1
  • Joachim Schachtner
    • 1
  • Denis Tagu
    • 3
  • Sylvia Anton
    • 2
  1. 1.Department of Biology - Animal PhysiologyPhilipps University MarburgMarburgGermany
  2. 2.Centre de Recherches de VersaillesINRA, UMR 1272 PISCVersaillesFrance
  3. 3.Domaine de la MotteINRA Rennes, UMR1099 BiO3PLe RheuFrance
  4. 4.Laboratory of Insect Physiology (74b), DBBE, C1428EHAUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations