Cell and Tissue Research

, Volume 342, Issue 3, pp 391–400 | Cite as

The Ca2+-binding protein calretinin is selectively enriched in a subpopulation of the epithelial rests of Malassez

  • Yüksel Korkmaz
  • Franz-Josef Klinz
  • Thomas Beikler
  • Thorsten Blauhut
  • Kurt Schneider
  • Klaus Addicks
  • Wilhelm Bloch
  • Wolfgang H-M Raab
Regular Article


During tooth development, the inner and outer enamel epithelia fuse by mitotic activity to produce a bilayered epithelial sheath termed Hertwig’s epithelial root sheath (HERS). The epithelial rests of Malassez (ERM) are the developmental residues of HERS and remain in the adult periodontal ligament (PDL). Although the cellular regulation of the Ca2+-binding proteins parvalbumin, calbindin-D28k, and calretinin has been reported in the inner and outer enamel epithelia during tooth development, an involvement of Ca2+-binding proteins in the ERM has not so far been characterized. Among the three Ca2+-binding proteins tested (calbindin D28k, parvalbumin, calretinin), we have only been able to detect calretinin in a subpopulation of adult rat molar ERM, by using quantitative immunohistochemical and confocal immunofluorescence techniques. TrkA (a marker for ERM) is present in numerous epithelial cell clusters, whereas calretinin has been localized in the cytosol and perinuclear region of a subpopulation of TrkA-positive cells. We conclude that, in inner and outer enamel epithelial cells, Ca2+ is regulated by calbindin, parvalbumin, and calretinin during tooth development, whereas in the ERM of adult PDL, Ca2+ is regulated only by calretinin. The expression of Ca2+-binding proteins is restricted in a developmental manner in the ERM.


Epithelial rests of Malassez Ca2+-binding proteins Calretinin Calbindin-D28k Parvalbumin Rat (Wistar) 



The technical assistance of E. Janßen, J. Kozlowski, and Ch. Hoffmann is gratefully appreciated.


  1. Berdal A, Balmain N, Thornasset M, Breiher A, Hotton D, Cuisinier-Gleizes P, Mathieu H (1989) Calbindins-D 9kDa and 28kDa and enamel secretion in vitamin D-deficient and control rats. Connect Tissue Res 22:165–171CrossRefPubMedGoogle Scholar
  2. Berdal A, Nanci A, Smith CE, Ahluwallia JP, Thomasset M, Cuisinier-Gleizes P, Mathieu H (1991) Differential expression of calbindin-D 28kDa in rat incisor ameloblasts throughout enamel development. Anat Rec 230:149–163CrossRefPubMedGoogle Scholar
  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21CrossRefPubMedGoogle Scholar
  4. Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265PubMedGoogle Scholar
  5. Bosshardt DD (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84:390–406CrossRefPubMedGoogle Scholar
  6. Bosshardt DD, Nanci A (1997) Immunodetection of enamel- and cementum-related (bone) proteins at the enamel-free area and cervical portion of the tooth in rat molars. J Bone Miner Res 12:367–379CrossRefPubMedGoogle Scholar
  7. Bosshardt DD, Nanci A (1998) Immunodetection of epithelial and mesenchymal matrix constitutes in association with inner enamel epithelial cells. J Histochem Cytochem 46:135–142PubMedGoogle Scholar
  8. Bosshardt DD, Schroeder HE (1996) Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec 245:267–292CrossRefPubMedGoogle Scholar
  9. Buchner A, Sciubba JJ (1987) Peripheral epithelial odontogenic tumors: a review. Oral Surg Oral Med Oral Pathol 63:688–697CrossRefPubMedGoogle Scholar
  10. Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibers. Nature 297:504–506CrossRefPubMedGoogle Scholar
  11. Celio MR, Norman AW, Heizmann CW (1984) Vitamin-D-dependent calcium-binding-protein and parvalbumin occur in bones and teeth. Calcif Tissue Int 36:129–130CrossRefPubMedGoogle Scholar
  12. Celio MR, Baier W, Schärer L, Viragh PA de, Gerday C (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin. Cell Calcium 9:81–86CrossRefPubMedGoogle Scholar
  13. Celio MR, Baier W, Schärer L, Gregersen HJ, Viragh PA de, Norman AW (1990) Monoclonal antibodies directed against the calcium binding protein calbindin D-28k. Cell Calcium 11:599–602CrossRefPubMedGoogle Scholar
  14. Cerri PS, Freymüller E, Katchburian E (2000) Apoptosis in the early developing periodontium of rat molars. Anat Rec 258:136–144CrossRefPubMedGoogle Scholar
  15. Coleman H, Altini M, Ali H, Doglioni C, Favia G, Maiorano E (2001) Use of calretinin in the differential diagnosis of unicystic ameloblastomas. Histopathology 38:312–317CrossRefPubMedGoogle Scholar
  16. Davideau JL, Celio MR, Hotton D, Berdal A (1993) Developmental pattern and subcellular localization of parvalbumin in the rat tooth germ. Arch Oral Biol 38:707–715CrossRefPubMedGoogle Scholar
  17. Doyle KL, Kazda A, Hort Y, McKay SM, Oleskevich S (2007) Differentiation of adult mouse olfactory precursor cells into hair cells in vitro. Stem Cells 25:621–627CrossRefPubMedGoogle Scholar
  18. Gander JC, Gotzos V, Fellay B, Schwaller B (1996) Inhibition of the proliferative cycle and apoptotic events in WiDr cells after down-regulation of the calcium-binding protein calretinin using antisense oligodeoxynucleotides. Exp Cell Res 225:399–410CrossRefPubMedGoogle Scholar
  19. Goldberg M, Escaig F, Feinberg J, Weinmann S (1987) Ultrastrucutral localization of calmodulin in rat incisor ameloblasts and odontoblasts during the early stages of development. Adv Dent Res 1:227–235PubMedGoogle Scholar
  20. Goldberg M, Feinberg J, Rainteau D, Lecolle S, Dedman JR, Glenney JR, Weinmann S (1989) Differential localization of calmodulin, the 67 kDa calcimedin and calpactin II in secretory ameloblasts. Connect Tissue Res 22:157–164CrossRefPubMedGoogle Scholar
  21. Goldberg M, Feinberg J, Lecolle S, Kaetzel MA, Rainteau D, Lessard JL, Dedman JR, Weinmann S (1991) Co-distribution of annexin VI and actin in secretory ameloblasts and odontoblasts of rat incisor. Cell Tissue Res 263:81–89CrossRefPubMedGoogle Scholar
  22. Gotzos V, Schwaller B, Hetzel N, Bustos-Castillo M, Celio MR (1992) Expression of the calcium binding protein calretinin in WiDr cells and its correlation to their cell cycle. Exp Cell Res 202:292–302CrossRefPubMedGoogle Scholar
  23. Grzesik WJ, Cheng H, Oh JS, Kuznetsov SA, Mankani MH, Uzawa K, Robey PG, Yamauchi M (2000) Cementum-forming cells are phenotypically distinct from bone-forming cells. J Bone Miner Res 15:52–59CrossRefPubMedGoogle Scholar
  24. Hamamoto Y, Hamamoto N, Nakajima T, Ozawa H (1998) Morphological changes of epithelial rests of Malassez in rat molars induced by local administration of N-methylnitrosourea. Arch Oral Biol 43:899–906CrossRefPubMedGoogle Scholar
  25. Hasegawa N, Kawaguchi H, Ogawa T, Uchida T, Kurihara H (2003) Immunohistochemical characteristics of epithelial cell rests of Malassez during cementum reapir. J Periodontal Res 38:51–56CrossRefPubMedGoogle Scholar
  26. Heizmann CW (1993) Calcium signaling in the brain. Acta Neurobiol Exp (Warsz) 53:15–23Google Scholar
  27. Hubbard MJ (1996) Abundant calcium homeostasis machinery in rat dental enamel cells. Up-regulation of calcium store proteins during enamel mineralization implicates the endoplasmic reticulum in calcium transcytosis. Eur J Biochem 239:611–623CrossRefPubMedGoogle Scholar
  28. Hubbard MJ (2000) Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 11:437–466CrossRefPubMedGoogle Scholar
  29. Hubbard MJ, Bradley MP, Kardos TB, Forrester IT (1981) Calmodulin-like activity in a mineralizing tissue: the rat molar tooth germ. Calcif Tissue Int 33:545–548CrossRefPubMedGoogle Scholar
  30. Korfage JAM, Koolstra JH, Langenbach GEJ, Eijden TMGJ van (2005a) Fiber-type composition of the human jaw muscles. (Part 1) Origin and functional significance of fiber-type diversity. J Dent Res 84:774–783CrossRefPubMedGoogle Scholar
  31. Korfage JAM, Koolstra JH, Langenbach GEJ, Eijden TMGJ van (2005b) Fiber-type composition of the human jaw muscles. (Part 2) Role of hybrid fibers and factors responsible for inter-individual variation. J Dent Res 84:784–793CrossRefPubMedGoogle Scholar
  32. Korkmaz Y, Bloch W, Behrends S, Schroeder H, Addicks K, Baumann MA (2004) NO-cGMP signaling molecules in the rat epithelial rests of Malassez. Eur J Oral Sci 112:55–60CrossRefPubMedGoogle Scholar
  33. Korkmaz Y, Bloch W, Addicks K, Schneider K, Baumann MA, Raab WH (2005) The basal phosphorylation sites of endothelial nitric oxide synthase at serine (Ser) 1177, Ser116, and threonine (Thr) 495 in rat molar epithelial rests of Malassez. J Periodontol 76:1513–1519CrossRefPubMedGoogle Scholar
  34. Korkmaz Y, Bloch W, Klinz F-J, Kübler AC, Schneider K, Zimmer S, Addicks K, Raab WH-M (2009) The constitutive activation of extracellular signal-regulated kinase 1 and 2 in periodontal ligament nerve fibers. J Periodontol 80:850–859CrossRefPubMedGoogle Scholar
  35. Korkmaz Y, Klinz F-J, Moghbeli M, Addicks K, Raab WH-M, Bloch W (2010) The masticatory contractile load induced expression and activation of Akt1/PKBα in muscle fibers at the myotendinous junction within muscle-tendon-bone unit. J Biomed Biotechnol 2010:163203PubMedGoogle Scholar
  36. Linde A (1995) Dentin mineralization and the role of odontoblasts in calcium transport. Connect Tissue Res 33:163–170CrossRefPubMedGoogle Scholar
  37. Linde A, Lundgren T (1995) From serum to the mineral phase. The role of the odontoblast in calcium transport and mineral formation. Int J Dev Biol 392:213–222Google Scholar
  38. MacNeil RL, Thomas HF (1993) Development of the murine peridontium? Role of epithelial root sheath in formation of the periodontal attachment. J Periodontol 64:285–291PubMedGoogle Scholar
  39. Magloire H, Joffre A, Azerad J, Lawson DEM (1988) Localization of 28kDa calbindin in human odontoblasts. Cell Tissue Res 254:341–346CrossRefPubMedGoogle Scholar
  40. McCulloch CA, Melcher AH (1983) Continuous labelling of the periodontal ligament of mice. J Periodontal Res 18:231–241CrossRefPubMedGoogle Scholar
  41. Mistry D, Altini M, Coleman HG, Ali H, Maiorano E (2001) The spatial and temporal of calretinin in developing rat molars (Rattus norvegicus). Arch Oral Biol 46:973–981CrossRefPubMedGoogle Scholar
  42. Ochi K, Wakisaka S, Youn SH, Hanada K, Maeda T (1997) Calretinin-like immunoreactivity in the Ruffini endings, slowly adapting mechanoreceptors, of the periodontal ligament of the rat incisor. Brain Res 769:183–187CrossRefPubMedGoogle Scholar
  43. Onishi T, Ooshima T, Sobue S, Tabata MJ, Maeda T, Kurisu K, Wakisaka S (1999) Immunohistochemical localization of calbindin D28k during root formation of rat molar teeth. Cell Tissue Res 297:503–512CrossRefPubMedGoogle Scholar
  44. Onishi T, Okawa R, Murakami H, Ogawa T, Ooshima T, Wakisaka S (2003) Immunolocalization of calbindin D28k and vitamin D receptor during root formation of murine molar teeth. Anat Rec 273A:700–704CrossRefGoogle Scholar
  45. Quyang H, McCauley LK, Berry JE, Saygin NE, Tokiyasu Y, Somerman MJ (2000) Parathyroid hormone-related protein regulates extracellular matrix gene expression in cementoblasts and inhibits cementoblast-mediated mineralization in vitro. J Bone Miner Res 15:2140–2153CrossRefGoogle Scholar
  46. Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353CrossRefPubMedGoogle Scholar
  47. Schiffmann SN, Cheron G, Lohof A, d’Alcantara P, Meyer M, Parmentier M, Schurmans S (1999) Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci USA 96:5257–5262CrossRefPubMedGoogle Scholar
  48. Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300CrossRefPubMedGoogle Scholar
  49. Schwaller B, Buchwald P, Blümcke I, Celio MR, Hunziker W (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin. Cell Calcium 14:639–648CrossRefPubMedGoogle Scholar
  50. Shinmura Y, Tsuchiya S, Hata K-I, Honda MJ (2008) Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J Cell Physiol 217:728–738CrossRefPubMedGoogle Scholar
  51. Talic NF, Evans CA, Daniel JC, Zaki AE (2003) Proliferation of epithelial rests of Malassez during experimental tooth movement. Am J Orthod Dentofacial Orthop 123:527–533CrossRefPubMedGoogle Scholar
  52. Ten Cate AR (1972) The epithelial cell rests of Malassez and the genesis of the dental cyst. Oral Surg 34:956–964CrossRefPubMedGoogle Scholar
  53. Thomas HF (1995) Root formation. Int J Dev Biol 39:231–237PubMedGoogle Scholar
  54. Trowbridge HO, Shibata F (1967) Mitotic activity in epithelial rests of Malassez. Periodontics 5:109–112PubMedGoogle Scholar
  55. Wesselink PR, Beertsen W (1993) The prevalence and distribution of rests of Malassez in the mouse molar and their possible role in repair and maintenance of the periodontal ligament. Arch Oral Biol 38:399–403CrossRefPubMedGoogle Scholar
  56. Yamashiro T, Fujiyama K, Fukunaga T, Wang Y, Takano-Yamamoto T (2000) Epithelial rests of Malassez express immunoreactivity of TrkA and its distribution is regulated by sensory nerve innervation. J Histochem Cytochem 48:979–984PubMedGoogle Scholar
  57. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas P Jr (2003) Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn 228:651–663CrossRefPubMedGoogle Scholar
  58. Zimmermann L, Schwaller B (2002) Monoclonal antibodies recognizing epitopes of calretinins: dependence on Ca2+-binding status and differences in antigen accessibility in colon cancer cells. Cell Calcium 31:13–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yüksel Korkmaz
    • 1
  • Franz-Josef Klinz
    • 2
  • Thomas Beikler
    • 1
  • Thorsten Blauhut
    • 1
  • Kurt Schneider
    • 1
  • Klaus Addicks
    • 2
  • Wilhelm Bloch
    • 3
  • Wolfgang H-M Raab
    • 1
  1. 1.Department of Operative Dentistry, Periodontics and EndodonticsHeinrich Heine UniversityDüsseldorfGermany
  2. 2.Department I of AnatomyUniversity of CologneCologneGermany
  3. 3.Department of Molecular and Cellular Sports MedicineGerman Sports UniversityCologneGermany

Personalised recommendations