Advertisement

Cell and Tissue Research

, Volume 342, Issue 2, pp 139–146 | Cite as

Cellular regulators of protein kinase CK2

  • Mathias Montenarh
Review

Abstract

Protein phosphorylation is a key regulatory post-translational modification and is involved in the control of many cellular processes. Protein kinase CK2, formerly known as casein kinase II, which is a ubiquitous and highly conserved protein serine/threonine kinase, plays a central role in the control of a variety of pathways in cell proliferation, transformation, apoptosis and senescence. An understanding of the regulation of such a central protein kinase would greatly help our comprehension of the regulation of many pathways in cellular regulation. A number of reviews have addressed the detection, the development, and the characterization of inhibitors of CK2. The present review focuses on possible natural regulators of CK2, i.e. proteins and other cellular factors that bind to CK2 and thereby regulate its activity.

Keywords

Protein kinase Regulation Protein-protein interaction Natural inhibitors Natural activators 

Notes

Acknowledgment

I would like to thank Nathaniel Saidu for his help in editing the manuscript.

References

  1. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230CrossRefPubMedGoogle Scholar
  2. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043CrossRefPubMedGoogle Scholar
  3. Bandhakavi S, McCann RO, Hanna DE, Glover CVC (2003) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278:2829–2836CrossRefPubMedGoogle Scholar
  4. Bansal PK, Mishra A, High AA, Abdulle R, Kitagawa K (2009) Sgt1 dimerization is negatively regulated by protein kinase CK2-mediated phosphorylation at S361. J Biol Chem 284:18692–18698CrossRefPubMedGoogle Scholar
  5. Barker CJ, Illies C, Gaboardi GC, Berggren PO (2009) Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci 66:3851–3871CrossRefPubMedGoogle Scholar
  6. Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325CrossRefPubMedGoogle Scholar
  7. Bertrand L, Sayed MF, Pei XY, Parisini E, Dhanaraj V, Bolanos-Garcia VM, Allende JE, Blundell TL (2004) Structure of the regulatory subunit of CK2 in the presence of a p21WAF1 peptide demonstrates flexibility of the acidic loop. Acta Crystallogr D Biol Crystallogr 60:1698–1704CrossRefPubMedGoogle Scholar
  8. Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory b subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787CrossRefPubMedGoogle Scholar
  9. Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980PubMedGoogle Scholar
  10. Chaudhry PS, Nanez R, Casillas ER (1991) Purification and characterization of polyamine-stimulated protein kinase (casein kinase II) from bovine spermatozoa. Arch Biochem Biophys 288:337–342CrossRefPubMedGoogle Scholar
  11. Chen HK, Pai CY, Huang JY, Yeh NH (1999) Human Nopp 140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 19:8536–8546PubMedGoogle Scholar
  12. Cochet C, Chambaz EM (1983) Oligomeric structure and catalytic of G-type casein kinase. Isolation of the two subunits and renaturation experiments. J Biol Chem 258:1403–1406PubMedGoogle Scholar
  13. Cooper KD, Shukla JB, Rennert OM (1978) Polyamine compartmentalization in various human disease states. Clin Chim Acta 82:1–7CrossRefPubMedGoogle Scholar
  14. Cozza G, Bortolato A, Moro S (2009) How druggable is protein kinase CK2? Med Res Rev 30:419–462Google Scholar
  15. Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, Pinna LA (2001) Autocatalytic tyrosine-phosphorylation of protein kinase CK2 a and a' subunits: implication of Tyr182. Biochem J 357:563–567CrossRefPubMedGoogle Scholar
  16. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825CrossRefPubMedGoogle Scholar
  17. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174PubMedGoogle Scholar
  18. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2: a key to its function. Cell Tissue Res 301:329–340CrossRefPubMedGoogle Scholar
  19. Filhol O, Cochet C (2009) Cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci 66:1830–1839CrossRefPubMedGoogle Scholar
  20. Filhol O, Cochet C, Chambaz EM (1990) Cytoplasmic and nuclear distribution of casein kinase II: characterization of the enzyme uptake by bovine adrenocortical nuclear preparation. Biochemistry 29:9928–9936CrossRefPubMedGoogle Scholar
  21. Filhol O, Cochet C, Delagoutte T, Chambaz EM (1991a) Polyamine binding activity of casein kinase II. Biochem Biophys Res Commun 180:945–952CrossRefPubMedGoogle Scholar
  22. Filhol O, Loue-Mackenbach P, Cochet C, Chambaz EM (1991b) Casein kinase II and polyamines may interact in the response of adrenocortical cells to their trophic hormone. Biochem Biophys Res Commun 180:623–630CrossRefPubMedGoogle Scholar
  23. Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM, Cochet C (1992) Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. J Biol Chem 267:20577–20583PubMedGoogle Scholar
  24. Götz C, Wagner P, Issinger OG, Montenarh M (1996) p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene 13:391–398PubMedGoogle Scholar
  25. Götz C, Kartarius S, Scholtes P, Montenarh M (1998) In vivo studies of the interaction between protein kinase CK2 and p21WAF1/CIP1. Cancer Mol Biol 5:1189–1205Google Scholar
  26. Götz C, Scholtes P, Schuster N, Prowald A, Nastainczyk W, Montenarh M (1999) Protein kinase CK2 binds to a multi-protein binding domain of the growth suppressor protein p53. Mol Cell Biochem 191:111–120CrossRefPubMedGoogle Scholar
  27. Götz C, Kartarius S, Scholtes P, Montenarh M (2000) Binding of p21WAF1/CIP1 on the polypeptide chain of the protein kinase CK2β subunit. Biochem Biophys Res Commun 268:882–885CrossRefPubMedGoogle Scholar
  28. Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits a and b from bacteria. Eur J Biochem 198:25–30CrossRefPubMedGoogle Scholar
  29. Guerra B, Issinger OG (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886CrossRefPubMedGoogle Scholar
  30. Guerra B, Götz C, Wagner P, Montenarh M, Issinger OG (1997) The carboxy terminus of p53 mimicks the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14:2683–2688CrossRefPubMedGoogle Scholar
  31. Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J 21:2038–2044CrossRefPubMedGoogle Scholar
  32. Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729CrossRefPubMedGoogle Scholar
  33. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1994) The p21 Cdk-interacting protein cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816CrossRefGoogle Scholar
  34. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 4:387–400Google Scholar
  35. Hathaway GM, Traugh JA (1984a) Kinetics of activation of casein kinase II by polyamines and reversal of 2, 3-bisphosphoglycerate inhibition. J Biol Chem 259:7011–7015PubMedGoogle Scholar
  36. Hathaway GM, Traugh JA (1984b) Regulation of casein kinase II by 2, 3-bisphosphoglycerate in erythroid cells. J Biol Chem 259:2850–2855PubMedGoogle Scholar
  37. Herrmann CPE, Kraiss S, Montenarh M (1991) Association of casein kinase II with immunopurified p53. Oncogene 6:877–884PubMedGoogle Scholar
  38. Homma MK, Li DX, Krebs EG, Yuasa Y, Homma Y (2002) Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein. Proc Natl Acad Sci USA 99:5959–5964CrossRefPubMedGoogle Scholar
  39. Keller DM, Lu H (2002) p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277:50206–50213CrossRefPubMedGoogle Scholar
  40. Keller DM, Zeng XY, Wang Y, Zhang QH, Kapoor M, Shu HJ, Goodman R, Lozano G, Zhao YM, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292CrossRefPubMedGoogle Scholar
  41. Kim YK, Jin Y, Vukoti KM, Park JK, Kim EE, Lee KJ, Yu YG (2003) Purification and characterization of human nucleolar phosphoprotein 140 expressed in Escherichia coli. Protein Expr Purif 31:260–264CrossRefPubMedGoogle Scholar
  42. Kinzler KW, Nilbert MC, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hamilton SR, Hedge P, Markham A (1991) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370CrossRefPubMedGoogle Scholar
  43. Koza RA, Megosh LC, Palmieri M, O'Brien TG (1991) Constitutively elevated levels of ornithine and polyamines in mouse epidermal papillomas. Carcinogenesis 12:1619–1625CrossRefPubMedGoogle Scholar
  44. Kraiss S, Barnekow A, Montenarh M (1990) Protein kinase activity associated with immunopurified p53 protein. Oncogene 5:845–855PubMedGoogle Scholar
  45. Kumar R, Tao M (1975) Multiple forms of casein kinase from rabbit erythrocytes. Biochim Biophys Acta 410:87–98PubMedGoogle Scholar
  46. Lawson K, Larentowicz L, Artim S, Hayes CS, Gilmour SK (2006) A novel protein kinase CK2 substrate indicates CK2 is not directly stimulated by polyamines in vivo. Biochemistry 45:1499–1510CrossRefPubMedGoogle Scholar
  47. Lee WK, Lee SY, Kim WI, Rho YH, Bae YS, Lee C, Kim IY, Yu YG (2008) Characterization of the InsP6-dependent interaction between CK2 and Nopp140. Biochem Biophys Res Commun 376:439–444CrossRefPubMedGoogle Scholar
  48. Li DX, Meier UT, Dobrowolska G, Krebs EG (1997) Specific interaction between casein kinase 2 and the nucleolar protein Nopp 140. J Biol Chem 272:3773–3779CrossRefPubMedGoogle Scholar
  49. Li R, Waga S, Hannon GJ, Beach D, Stillman B (1994) Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371:534–537CrossRefPubMedGoogle Scholar
  50. Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA, Itarte E (2003) Eukaryotic translation-initiation factor elFb binds to protein kinase CK2: effects on CK2a activity. Biochem J 375:623–631CrossRefPubMedGoogle Scholar
  51. Mannowetz N, Kartarius S, Wennemuth G, Montenarh M (2010) Protein kinase CK2 and new binding partners during spermatogenesis. Cell Mol Life Sci (in press), doi:  10.1007/s00018-010-0412-9
  52. Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C (2001) Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem 227:81–90CrossRefPubMedGoogle Scholar
  53. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368CrossRefPubMedGoogle Scholar
  54. Meggio F, Boldyreff BS, Marin O, Marchiori F, Perich JW, Issinger OG, Pinna LA (1992) The effect of polylysine on CK-2 activity is influenced by both the structure of the protein/peptide substrates and subunit composition of the enzyme. Eur J Biochem 205:939–945CrossRefPubMedGoogle Scholar
  55. Meggio F, Boldyreff B, Issinger OG, Pinna LA (1994) Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55–64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33:4336–4342CrossRefPubMedGoogle Scholar
  56. Meggio F, Boldyreff B, Marin O, Issinger OG, Pinna LA (1995) Phosphorylation and activation of protein kinase CK2 by p34cdc2 are independent events. Eur J Biochem 230:1025–1031CrossRefPubMedGoogle Scholar
  57. Meggio F, Negro A, Sarno S, Ruzzene M, Bertoli A, Sorgato MC, Pinna LA (2000) Bovine prion protein as a modulator of protein kinase CK2. Biochem J 352:191–196CrossRefPubMedGoogle Scholar
  58. Meier UT, Blobel G (1992) Nopp 140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127–138CrossRefPubMedGoogle Scholar
  59. Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW (2002) Interactions between protein kinase CK2 and Pin1—evidence for phosphorylation-dependent interactions. J Biol Chem 277:23054–23064CrossRefPubMedGoogle Scholar
  60. Miyata Y (2009) CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849CrossRefPubMedGoogle Scholar
  61. Miyata Y, Yahara I (2002) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047Google Scholar
  62. Münstermann U, Fritz G, Seitz G, Yiping L, Schneider HR, Issinger OG (1990) Casein kinase II is elevated in human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189:251–257CrossRefPubMedGoogle Scholar
  63. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution. EMBO J 17:2451–2462CrossRefPubMedGoogle Scholar
  64. Niefind K, Guerra B, Emakowa J, Issinger OG (2001) Crystal structure of human protein kinase CK2 insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331CrossRefPubMedGoogle Scholar
  65. Ohtsuki K, Nishikawa Y, Saito H, Munakata H, Kato T (1996) DNA-binding sperm proteins with oligo-arginine clusters function as potent activators for egg CK-II. FEBS Lett 378:115–120CrossRefPubMedGoogle Scholar
  66. Oliva R, Goren R, Dixon GH (1989) Quail (Coturnix japonica) protamine, full-length cDNA sequence, and the function and evolution of vertebrate protamines. J Biol Chem 264:17627–17630PubMedGoogle Scholar
  67. Olsen BB, Guerra B (2008) Ability of CK2beta to selectively regulate cellular protein kinases. Mol Cell Biochem 316:115–126CrossRefPubMedGoogle Scholar
  68. Pagano MA, Cesaro L, Meggio F, Pinna LA (2006) Protein kinase CK2: a newcomer in the “druggable kinome”. Biochem Soc Trans 34:1303–1306CrossRefPubMedGoogle Scholar
  69. Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA (2008) Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry 47:7925–7936CrossRefPubMedGoogle Scholar
  70. Pagano MA, Marin O, Cozza G, Sarno S, Meggio F, Treharne KJ, Mehta A, Pinna LA (2010) Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2. Biochem J 426:19–29CrossRefPubMedGoogle Scholar
  71. Pegg AE, McCann PP (1982) Polyamine metabolism and function. Am J Physiol 243:C212–C221PubMedGoogle Scholar
  72. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878CrossRefPubMedGoogle Scholar
  73. Praskova M, Kalenderova S, Miteva L, Poumay Y, Mitev V (2002) The ornithine decarboxylase inhibitor, difluoromethylornithine, inhibits casein kinase II activity, c-Myc expression and normal human keratinocyte proliferation. Arch Dermatol Res 293:590–593PubMedGoogle Scholar
  74. Prowald A, Schuster N, Montenarh M (1997) Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. FEBS Lett 408:99–104CrossRefPubMedGoogle Scholar
  75. Roher N, Sarno S, Miró F, Ruzzene M, Llorens F, Meggio F, Itarte E, Pinna LA, Plana M (2001) The carboxy-terminal domain of Grp94 binds to protein kinase CK2a but not to CK2 holoenzyme. FEBS Lett 505:42–46CrossRefPubMedGoogle Scholar
  76. Romero-Oliva F, Allende JE (2001) Protein p21WAF1/CIP1 is phosphorylated by protein kinase CK2 in vitro and interacts with the amino terminal end of the CK2 beta subunit. J Cell Biochem 81:445–452CrossRefPubMedGoogle Scholar
  77. Romero-Oliva F, Jacob G, Allende JE (2003) Dual effect of lysine-rich polypeptides on the activity of protein kinase CK2. J Cell Biochem 89:348–355CrossRefPubMedGoogle Scholar
  78. Sarno S, Pinna LA (2008) Protein kinase CK2 as a druggable target. Mol Biosyst 4:889–894CrossRefPubMedGoogle Scholar
  79. Sarno S, Marin O, Meggio F, Pinna LA (1993) Polyamines as negative regulators of casein kinase-2: the phosphorylation of calmodulin triggered by polylysine and by the alpha[66-86] peptide is prevented by spermine. Biochem Biophys Res Commun 194:83–90CrossRefPubMedGoogle Scholar
  80. Schuster N, Prowald A, Schneider E, Scheidtmann K-H, Montenarh M (1999) Regulation of p53 mediated transactivation by the b-subunit of protein kinase CK2. FEBS Lett 447:160–166CrossRefPubMedGoogle Scholar
  81. Schuster N, Götz C, Faust M, Schneider E, Prowald A, Jungbluth A, Montenarh M (2001) Wild-type p53 inhibits protein kinase CK2 activity. J Cell Biochem 81:172–181CrossRefPubMedGoogle Scholar
  82. Shaulian E, Zauberman A, Ginsberg D, Oren M (1992) Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol Cell Biol 12:5581–5592PubMedGoogle Scholar
  83. Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114CrossRefPubMedGoogle Scholar
  84. Shore LJ, Soler AP, Gilmour SK (1997) Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J Biol Chem 272:12536–12543CrossRefPubMedGoogle Scholar
  85. Solyakov L, Cain K, Tracey BM, Jukes R, Riley AM, Potter BVL, Tobin AB (2004) Regulation of casein kinase-2 (CK2) activity by inositol phosphates. J Biol Chem 279:43403–43410CrossRefPubMedGoogle Scholar
  86. Soussi T, Caron de Fromentel C, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952PubMedGoogle Scholar
  87. Stigare J, Buddelmeijer N, Pigon A, Egyhazi E (1993) A majority of CK2 alpha subunit is tightly bound to intranuclear compounds but not to the beta subunit. Mol Cell Biol 129:77–85Google Scholar
  88. Szwergold BS, Graham RA, Brown TR (1987) Observation of inositol pentakis- and hexakis-phosphates in mammalian tissues by 31P NMR. Biochem Biophys Res Commun 149:874–881CrossRefPubMedGoogle Scholar
  89. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790CrossRefPubMedGoogle Scholar
  90. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signaling in neoplasia. Histol Histopathol 16:573–582PubMedGoogle Scholar
  91. Unger T, Mietz JA, Scheffner M, Yee CL, Howley PM (1993) Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol Cell Biol 13:5186–5194PubMedGoogle Scholar
  92. Unger GM, Davis AT, Slaton JW, Ahmed K (2004) Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4:77–84CrossRefPubMedGoogle Scholar
  93. Valero E, De Bonis S, Filhol O, Wade RH, Langowski J, Chambaz EM, Cochet C (1995) Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with catalytic activity. J Biol Chem 270:8345–8352CrossRefPubMedGoogle Scholar
  94. Vilk G, Weber JE, Turowec JP, Duncan JS, Wu C, Derksen DR, Zien P, Sarno S, Donella-Deana A, Lajoie G, Pinna LA, Li SS, Litchfield DW (2008) Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells. Cell Signal 20:1942–1951CrossRefPubMedGoogle Scholar
  95. Wagner P, Appel K, Issinger OG, Montenarh M (1994) On the interaction of p53 with casein kinase II. Int J Oncol 4:491–498Google Scholar
  96. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283:18473–18477CrossRefPubMedGoogle Scholar
  97. Wang Y, Reed M, Wang P, Stenger JE, Mayr G, Anderson ME, Schwedes JF, Tegtmeyer P (1993) p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev 7:2575–2586CrossRefPubMedGoogle Scholar
  98. Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT (2000) Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp 140. Mol Biol Cell 11:567–577PubMedGoogle Scholar
  99. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Medizinische Biochemie und MolekularbiologieUniversität des SaarlandesHomburgGermany

Personalised recommendations