Advertisement

Cell and Tissue Research

, Volume 343, Issue 1, pp 23–32 | Cite as

Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions

  • Mark Lyte
  • Lucy Vulchanova
  • David R. Brown
Review

Abstract

Psychological stress has profound effects on gastrointestinal function, and investigations over the past few decades have examined the mechanisms by which neural and hormonal stress mediators act to modulate gut motility, epithelial barrier function and inflammatory states. With its cellular diversity and large commensal bacterial population, the intestinal mucosa and its overlying mucous environment constitute a highly interactive environment for eukaryotic host cells and prokaryotic bacteria. The elaboration of stress mediators, particularly norepinephrine, at this interface influences host cells engaged in mucosal protection and the bacteria which populate the mucosal surface and gut lumen. This review will address growing evidence that norepinephrine and, in some cases, other mediators of the adaptation to stress modulate mucosal interactions with enteric bacteria. Stress-mediated changes in this delicate interplay may shift the microbial colonization patterns on the mucosal surface and alter the susceptibility of the host to infection. Moreover, changes in host-microbe interactions in the digestive tract may also influence ongoing neural activity in stress-responsive brain areas.

Keywords

Bacteria Autonomic nervous system Immune cells Nerves Gut-to-brain 

Notes

Acknowledgements

This work was supported by grants from the National Institutes of Health to L.V. (DA-17236) and D.R.W. (DA-10200).

References

  1. Alverdy J, Aoys E (1991) The effect of glucocorticoid administration on bacterial translocation. Evidence for an acquired mucosal immunodeficient state. Ann Surg 214:719–723PubMedCrossRefGoogle Scholar
  2. Alverdy J, Stern E, Poticha S, Baunoch D, Adrian T (1997) Cholecystokinin modulates mucosal immunoglobulin A function. Surgery 122:386–392PubMedCrossRefGoogle Scholar
  3. Anderson MT, Armstrong SK (2006) The Bordetella bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J Bacteriol 188:5731–5740PubMedCrossRefGoogle Scholar
  4. Anderson MT, Armstrong SK (2008) Norepinephrine mediates acquisition of transferrin-iron in Bordetella bronchiseptica. J Bacteriol 190:3940–3947PubMedCrossRefGoogle Scholar
  5. Baglole CJ, Davison JS, Meddings JB (2005) Epithelial distribution of neural receptors in the guinea pig small intestine. Can J Physiol Pharmacol 83:389–395PubMedCrossRefGoogle Scholar
  6. Bailey MT, Karaszewski JW, Lubach GR, Coe CL, Lyte M (1999) In vivo adaptation of attenuated Salmonella typhimurium results in increased growth upon exposure to norepinephrine. Physiol Behav 67:359–364PubMedCrossRefGoogle Scholar
  7. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M (2010) Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 78:1509–1519PubMedCrossRefGoogle Scholar
  8. Bearson BL, Bearson SM (2008) The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog 44:271–278PubMedCrossRefGoogle Scholar
  9. Bearson BL, Bearson SM, Lee IS, Brunelle BW (2010) The Salmonella enterica serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase. Microb Pathog 48:214–219PubMedCrossRefGoogle Scholar
  10. Boivin MA, Ye D, Kennedy JC, Al-Sadi R, Shepela C, Ma TY (2007) Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol 292:G590–G598PubMedCrossRefGoogle Scholar
  11. Brown DR, Price LD (2008) Catecholamines and sympathomimetic drugs decrease early Salmonella Typhimurium uptake into porcine Peyer's patches. FEMS Immunol Med Microbiol 52:29–35PubMedCrossRefGoogle Scholar
  12. Cannon WB (1902) The movements of the intestines studied by means of the Röntgen rays. J Med Res 7:72–75PubMedGoogle Scholar
  13. Chan R, Acres SD, Costerton JW (1982) Use of specific antibody to demonstrate glycocalyx, K99 pili, and the spatial relationships of K99+ enterotoxigenic Escherichia coli in the ileum of colostrum-fed calves. Infect Immun 37:1170–1180PubMedGoogle Scholar
  14. Chang EB, Field M, Miller RJ (1983) Enterocyte alpha 2-adrenergic receptors: yohimbine and p-aminoclonidine binding relative to ion transport. Am J Physiol 244:G76–G82PubMedGoogle Scholar
  15. Chen C, Brown DR, Xie Y, Green BT, Lyte M (2003) Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock 20:183–188PubMedCrossRefGoogle Scholar
  16. Chen C, Lyte M, Stevens MP, Vulchanova L, Brown DR (2006) Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon. Eur J Pharmacol 539:116–124PubMedCrossRefGoogle Scholar
  17. Chiocchetti R, Mazzuoli G, Albanese V, Mazzoni M, Clavenzani P, Lalatta-Costerbosa G, Lucchi ML, Di Guardo G, Marruchella G, Furness JB (2008) Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion? Cell Tissue Res 332:185–194PubMedCrossRefGoogle Scholar
  18. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425PubMedCrossRefGoogle Scholar
  19. Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56:1060–1065PubMedCrossRefGoogle Scholar
  20. Cohen N (2006) Norman Cousins Lecture. The uses and abuses of psychoneuroimmunology: a global overview. Brain Behav Immun 20:99–112PubMedCrossRefGoogle Scholar
  21. Coulanges V, Andre P, Ziegler O, Buchheit L, Vidon DJ-M (1997) Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect Immun 65:2778–2785PubMedGoogle Scholar
  22. Coulanges V, Andre P, Vidon DJ-M (1998) Effect of siderophores, catecholamines, and catechol compounds on Listeria spp. growth in iron-complexed medium. Biochem Biophys Res Commun 249:426–530CrossRefGoogle Scholar
  23. Dharmsathaphorn K, Yamashiro DJ, Lindeborg D, Mandel KG, McRoberts J, Ruffolo RR (1984) Effects of structure-activity relationships of alpha-adrenergic compounds on electrolyte transport in the rabbit ileum and rat colon. Gastroenterology 86:120–128PubMedGoogle Scholar
  24. Diard S, Liévin-Le Moal V, Toribio AL, Boum Y, Vigier F, Servin AL, Bouvet O (2009) Norepinephrine-dependently released Dr fimbriae of diffusely adhering Escherichia coli strain IH11128 promotes a mitogen-activated protein kinase ERK1/2-dependent production of pro-inflammatory cytokine, IL-8 in human intestinal Caco-2/TC7 cells. Microbes Infect 11:886–894PubMedCrossRefGoogle Scholar
  25. Doherty NC, Tobias A, Watson S, Atherton JC (2009) The effect of the human gut-signalling hormone, norepinephrine, on the growth of the gastric pathogen. Helicobacter pylori Helicobacter 14:223–230CrossRefGoogle Scholar
  26. Dunn AJ, Ando T, Brown RF, Berg RD (2003) HPA axis activation and neurochemical responses to bacterial translocation from the gastrointestinal tract. Ann NY Acad Sci 992:21–29PubMedCrossRefGoogle Scholar
  27. Elenkov IJ, Chrousos GP (2006) Stress system–organization, physiology and immunoregulation. Neuroimmunomodulation 13:257–267PubMedCrossRefGoogle Scholar
  28. Ellermeier JR, Slauch JM (2008) Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 190:476–486PubMedCrossRefGoogle Scholar
  29. Field M, McColl I (1973) Ion transport in rabbit ileal mucosa. 3. Effects of catecholamines. Am J Physiol 225:852–857PubMedGoogle Scholar
  30. Fondacaro JD, Kolpak D, McCafferty GP (1988) Selective alpha-2 adrenoceptor agonists alter fluid and electrolyte transport in mammalian small intestine. J Pharmacol Exp Ther 247:481–486PubMedGoogle Scholar
  31. Freestone PP, Lyte M, Neal CP, Maggs AF, Haigh RD, Williams PH (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098PubMedCrossRefGoogle Scholar
  32. Freestone PP, Haigh RD, Lyte M (2007a) Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 7:8PubMedCrossRefGoogle Scholar
  33. Freestone PP, Walton NJ, Haigh RD, Lyte M (2007b) Influence of dietary catechols on the growth of enteropathogenic bacteria. Int J Food Microbiol 119:159–169PubMedCrossRefGoogle Scholar
  34. Fujishima S, Takeda H, Kawata S, Yamakawa M (2009) The relationship between the expression of the glucocorticoid receptor in biopsied colonic mucosa and the glucocorticoid responsiveness of ulcerative colitis patients. Clin Immunol 133:208–217PubMedCrossRefGoogle Scholar
  35. Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, DelValle J, Yamada T (1993) Molecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246–8250PubMedGoogle Scholar
  36. Gareau MG, Jury J, Perdue MH (2007) Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol 293:G198–G203PubMedCrossRefGoogle Scholar
  37. Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8:274–281PubMedCrossRefGoogle Scholar
  38. Gebhardt T, Gerhard R, Bedoui S, Erpenbeck VJ, Hoffmann MW, Manns MP, Bischoff SC (2005) beta2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur J Immunol 35:1124–1132PubMedCrossRefGoogle Scholar
  39. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19:334–344PubMedCrossRefGoogle Scholar
  40. Goehler LE, Lyte M, Gaykema RP (2007) Infection-induced viscerosensory signals from the gut enhance anxiety: implications for psychoneuroimmunology. Brain Behav Immun 21:721–726PubMedCrossRefGoogle Scholar
  41. Goehler L, Park S, Opitz N, Lyte M, Gaykema R (2008) Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun 22:354–366PubMedCrossRefGoogle Scholar
  42. González-Ariki S, Husband AJ (2000) Ontogeny of IgA(+) cells in lamina propria: effects of sympathectomy. Dev Comp Immunol 24:61–69PubMedCrossRefGoogle Scholar
  43. Gopal R, Birdsell D, Monroy FP (2008) Regulation of Toll-like receptors in intestinal epithelial cells by stress and Toxoplasma gondii infection. Parasite Immunol 30:563–576PubMedCrossRefGoogle Scholar
  44. Green BT, Lyte M, Kulkarni-Narla A, Brown DR (2003) Neuromodulation of enteropathogen internalization in Peyer's patches from porcine jejunum. J Neuroimmunol 141:74–82PubMedCrossRefGoogle Scholar
  45. Green BT, Lyte M, Chen C, Xie Y, Casey MA, Kulkarni-Narla A, Vulchanova L, Brown DR (2004) Adrenergic modulation of Escherichia coli O157:H7 adherence to the colonic mucosa. Am J Physiol Gastrointest Liver Physiol 287:G1238–G1246PubMedCrossRefGoogle Scholar
  46. Halm ST, Zhang J, Halm DR (2010) beta-Adrenergic activation of electrogenic K + and Cl- secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways. Am J Physiol Gastrointest Liver Physiol 299:G81–G95PubMedCrossRefGoogle Scholar
  47. Hart A, Kamm MA (2002) Mechanisms of initiation and perpetuation of gut inflammation by stress. Aliment Pharmacol Ther 16:2017–2028PubMedCrossRefGoogle Scholar
  48. Hecht G (1999) Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol 277:C351–C358PubMedGoogle Scholar
  49. Hegde M, Wood TK, Jayaraman A (2009) The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol 84:763–776PubMedCrossRefGoogle Scholar
  50. Hildebrand KR, Lin G, Murtaugh MP, Brown DR (1993) Molecular characterization of alpha 2-adrenergic receptors regulating intestinal electrolyte transport. Mol Pharmacol 43:23–29PubMedGoogle Scholar
  51. Hörger S, Schultheiss G, Diener M (1998) Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am J Physiol 275:G1367–G1376PubMedGoogle Scholar
  52. Iqbal J, Li X, Chang BH, Chan L, Schwartz GJ, Chua SC Jr, Hussain MM (2010) An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J Lipid Res 51:1929–1942PubMedCrossRefGoogle Scholar
  53. Jarillo-Luna A, Rivera-Aguilar V, Martìnez-Carrillo BE, Barbosa-Cabrera E, Garfias HR, Campos-Rodríguez R (2008) Effect of restraint stress on the population of intestinal intraepithelial lymphocytes in mice. Brain Behav Immun 22:265–275PubMedCrossRefGoogle Scholar
  54. Keita AV, Söderholm JD (2010) The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 22:718–733PubMedCrossRefGoogle Scholar
  55. Kinney KS, Austin CE, Morton DS, Sonnenfeld G (1999) Catecholamine enhancement of Aeromonas hydrophila growth. Microb Pathog 26:85–91PubMedCrossRefGoogle Scholar
  56. Kinney KS, Austin CE, Morton DS, Sonnenfeld G (2000) Norepinephrine as a growth stimulating factor in bacteria–mechanistic studies. Life Sci 67:3075–3085PubMedCrossRefGoogle Scholar
  57. Kulkarni-Narla A, Beitz AJ, Brown DR (1999) Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum. Cell Tissue Res 298:275–286PubMedCrossRefGoogle Scholar
  58. Lam RS, App EM, Nahirney D, Szkotak AJ, Vieira-Coelho MA, King M, Duszyk M (2003) Regulation of Cl- secretion by alpha2-adrenergic receptors in mouse colonic epithelium. J Physiol 548:475–484PubMedCrossRefGoogle Scholar
  59. Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN (2009) Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 299:100–109CrossRefGoogle Scholar
  60. Lomax AE, Sharkey KA, Furness JB (2010) The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil 22:7–18PubMedGoogle Scholar
  61. Lydiard RB, Fossey MD, Marsh W, Ballenger JC (1993) Prevalence of psychiatric disorders in patients with irritable bowel syndrome. Psychosomatics 34:229–234PubMedGoogle Scholar
  62. Lyte M (1993) The role of microbial endocrinology in infectious disease. J Endocrinol 137:343–345PubMedCrossRefGoogle Scholar
  63. Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12:14–20PubMedCrossRefGoogle Scholar
  64. Lyte M (2010a) Microbial Endocrinology: A Personal Journey. In: Lyte M, Freestone PPE (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 1–16Google Scholar
  65. Lyte M (2010b) The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74:634–638PubMedCrossRefGoogle Scholar
  66. Lyte M (2010c) Microbial endocrinology as a basis for improved L-DOPA bioavailability in Parkinson's patients treated for Helicobacter pylori. Med Hypotheses 74:895–897PubMedCrossRefGoogle Scholar
  67. Lyte M, Bailey M (1997) Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res 70:195–201PubMedCrossRefGoogle Scholar
  68. Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212PubMedCrossRefGoogle Scholar
  69. Lyte M, Ernst S (1993) Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190:447–452PubMedCrossRefGoogle Scholar
  70. Lyte M, Freestone PPE (2010) Microbial endocrinology: interkingdom signaling infectious disease and health. Springer, New YorkGoogle Scholar
  71. Lyte M, Nelson SG, Thompson ML (1990) Innate and adaptive immune responses in a social conflict paradigm. Clin Immunol Immunopathol 57:137–147PubMedCrossRefGoogle Scholar
  72. Lyte M, Frank CD, Green BT (1996a) Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol Lett 139:155–159PubMedGoogle Scholar
  73. Lyte M, Arulanandam BP, Frank CD (1996b) Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J Lab Clin Med 128:392–398PubMedCrossRefGoogle Scholar
  74. Lyte M, Arulanandam B, Nguyen K, Frank C, Erickson A, Francis D (1997a) Norepinephrine induced growth and expression of virulence associated factors in enterotoxigenic and enterohemorrhagic strains of Escherichia coli. Adv Exp Med Biol 412:331–339PubMedGoogle Scholar
  75. Lyte M, Erickson AK, Arulanandam BP, Frank CD, Crawford MA, Francis DH (1997b) Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 232:682–686PubMedCrossRefGoogle Scholar
  76. Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65:63–68PubMedCrossRefGoogle Scholar
  77. Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, Williams PH (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361:130–135PubMedCrossRefGoogle Scholar
  78. Lyte M, Gaykema R, Goehler L (2009) Behavior modification of host by microbes. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 121–127CrossRefGoogle Scholar
  79. Maaser C, Kannengiesser K, Specht C, Lügering A, Brzoska T, Luger TA, Domschke W, Kucharzik T (2006) Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 55:1415–1422PubMedCrossRefGoogle Scholar
  80. Macpherson AJ, Slack E (2007) The functional interactions of commensal bacteria with intestinal secretory IgA. Curr Opin Gastroenterol 23:673–678PubMedCrossRefGoogle Scholar
  81. Maestroni GJ (2006) Sympathetic nervous system influence on the innate immune response. Ann NY Acad Sci 1069:195–207PubMedCrossRefGoogle Scholar
  82. Matsuo K, Zhang X, Ono Y, Nagatomi R (2009) Acute stress-induced colonic tissue HSP70 expression requires commensal bacterial components and intrinsic glucocorticoid. Brain Behav Immun 23:108–115PubMedCrossRefGoogle Scholar
  83. Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47:861–869PubMedCrossRefGoogle Scholar
  84. Mestecky J, Russell MW (2009) Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett 124:57–62PubMedCrossRefGoogle Scholar
  85. Moreira CG, Weinshenker D, Sperandio V (2010) QseC mediates Salmonella enterica serovar Typhimurium virulence in vitro and in vivo. Infect Immun 78:914–926PubMedCrossRefGoogle Scholar
  86. Moss AC, Anton P, Savidge T, Newman P, Cheifetz AS, Gay J, Paraschos S, Winter MW, Moyer MP, Karalis K, Kokkotou E, Pothoulakis C (2007) Urocortin II mediates pro-inflammatory effects in human colonocytes via corticotropin-releasing hormone receptor 2alpha. Gut 56:1210–1217PubMedCrossRefGoogle Scholar
  87. Moynihan JA (2003) Mechanisms of stress-induced modulation of immunity. Brain Behav Immun 17(Suppl 1):S11–S16PubMedCrossRefGoogle Scholar
  88. Nakano M, Takahashi A, Sakai Y, Kawano M, Harada N, Mawatari K, Nakaya Y (2007a) Catecholamine-induced stimulation of growth in Vibrio species. Lett Appl Microbiol 44:649–653PubMedCrossRefGoogle Scholar
  89. Nakano M, Takahashi A, Sakai Y, Nakaya Y (2007b) Modulation of pathogenicity with norepinephrine related to the type III secretion system of Vibrio parahaemolyticus. J Infect Dis 195:1353–1360PubMedCrossRefGoogle Scholar
  90. Nijhuis LE, Olivier BJ, de Jonge WJ (2010) Neurogenic regulation of dendritic cells in the intestine. Biochem Pharmacol (in press)Google Scholar
  91. Nilssen DE, Oktedalen O, Lygren I, Opstad PK, Brandtzaeg P (1998) Intestinal IgA- and IgM-producing cells are not decreased in marathon runners. Int J Sports Med 19:425–431PubMedCrossRefGoogle Scholar
  92. Noti M, Corazza N, Mueller C, Berger B, Brunner T (2010a) TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med 207:1057–1066PubMedCrossRefGoogle Scholar
  93. Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T (2010b) Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFalpha-dependent manner. FASEB J 24:1340–1346PubMedCrossRefGoogle Scholar
  94. Ochoa-Cortes F, Ramos Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-López C, Vanner SJ (2010) Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol (in press)Google Scholar
  95. O'Donnell PM, Aviles H, Lyte M, Sonnenfeld G (2006) Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol 72:5097–5099PubMedCrossRefGoogle Scholar
  96. O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263–267PubMedCrossRefGoogle Scholar
  97. Oneal MJ, Schafer ER, Madsen ML, Minion FC (2008) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology 154:2581–2588PubMedCrossRefGoogle Scholar
  98. Peterson PK, Chao CC, Molitor T, Murtaugh M, Strgar F, Sharp BM (1991) Stress and pathogenesis of infectious disease. Rev Infect Dis 13:710–720PubMedGoogle Scholar
  99. Pullinger GD, Carnell SC, Sharaff FF, van Diemen PM, Dziva F, Morgan E, Lyte M, Freestone PP, Stevens MP (2010a) Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun 78:372–380PubMedCrossRefGoogle Scholar
  100. Pullinger GD, van Diemen PM, Carnell SC, Davies H, Lyte M, Stevens MP (2010b) 6-hydroxydopamine-mediated release of norepinephrine increases faecal excretion of Salmonella enterica serovar Typhimurium in pigs. Vet Res 41:68PubMedCrossRefGoogle Scholar
  101. Rasko D, Moreira C, Li dR, Reading N, Ritchie J, Waldor M, Williams N, Taussig R, Wei S, Roth M, Hughes D, Huntley J, Fina M, Falck J, Sperandio V (2008) Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080PubMedCrossRefGoogle Scholar
  102. Reading NC, Rasko DA, Torres AG, Sperandio V (2009) The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci USA 106:5889–5894PubMedCrossRefGoogle Scholar
  103. Reséndiz-Albor AA, Reina-Garfias H, Rojas-Hernández S, Jarillo-Luna A, Rivera-Aguilar V, Miliar-García A, Campos-Rodríguez R (2010) Regionalization of pIgR expression in the mucosa of mouse small intestine. Immunol Lett 128:59–67PubMedCrossRefGoogle Scholar
  104. Reyna-Garfias H, Miliar A, Jarillo-Luna A, Rivera-Aguilar V, Pacheco-Yepez J, Baeza I, Campos-Rodríguez R (2010) Repeated restraint stress increases IgA concentration in rat small intestine. Brain Behav Immun 24:110–118PubMedCrossRefGoogle Scholar
  105. Rostagno MH (2009) Can stress in farm animals increase food safety risk? Foodborne Pathog Dis 6:767–776PubMedCrossRefGoogle Scholar
  106. Sandrini SM, Shergill R, Woodward J, Muralikuttan R, Haigh RD, Lyte M, Freestone PP (2010) Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol 192:587–594PubMedCrossRefGoogle Scholar
  107. Santos J, Saunders PR, Hanssen NP, Yang PC, Yates D, Groot JA, Perdue MH (1999) Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology in the rat. Am J Physiol 277:G391–G399PubMedGoogle Scholar
  108. Santos J, Yates D, Guilarte M, Vicario M, Alonso C, Perdue MH (2008) Stress neuropeptides evoke epithelial responses via mast cell activation in the rat colon. Psychoneuroendocrinology 33:1248–1256PubMedCrossRefGoogle Scholar
  109. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedCrossRefGoogle Scholar
  110. Saunders PR, Santos J, Hanssen NP, Yates D, Groot JA, Perdue MH (2002) Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci 47:208–215PubMedCrossRefGoogle Scholar
  111. Scheckelhoff MR, Telford SR, Wesley M, Hu LT (2007) Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A. Proc Natl Acad Sci USA 104:7247–7252PubMedCrossRefGoogle Scholar
  112. Schmidt LD, Xie Y, Lyte M, Vulchanova L, Brown DR (2007) Autonomic neurotransmitters modulate immunoglobulin A secretion in porcine colonic mucosa. J Neuroimmunol 185:20–28PubMedCrossRefGoogle Scholar
  113. Schreiber KL, Brown DR (2005) Adrenocorticotrophic hormone modulates Escherichia coli O157:H7 adherence to porcine colonic mucosa. Stress 8:185–190PubMedCrossRefGoogle Scholar
  114. Schreiber KL, Price LD, Brown DR (2007) Evidence for neuromodulation of enteropathogen invasion in the intestinal mucosa. J Neuroimmune Pharmacol 2:329–337PubMedCrossRefGoogle Scholar
  115. Sellin JH, De Soignie R (1987) Ion transport in human colon in vitro. Gastroenterology 93:441–448PubMedGoogle Scholar
  116. Serrats J, Sawchenko PE (2006) CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 495:236–254PubMedCrossRefGoogle Scholar
  117. Selye H (1978) The stress of life, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  118. Smith F, Clark JE, Overman BL, Tozel CC, Huang JH, Rivier JE, Blikslager AT, Moeser AJ (2010) Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol 298:G352–G363PubMedCrossRefGoogle Scholar
  119. Soderholm JD, Perdue MH (2001) Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 280:G7–G13PubMedGoogle Scholar
  120. Spitz J, Hecht G, Taveras M, Aoys E, Alverdy J (1994) The effect of dexamethasone administration on rat intestinal permeability: the role of bacterial adherence. Gastroenterology 106:35–41PubMedGoogle Scholar
  121. Spitz JC, Ghandi S, Taveras M, Aoys E, Alverdy JC (1996) Characteristics of the intestinal epithelial barrier during dietary manipulation and glucocorticoid stress. Crit Care Med 24:635–641PubMedCrossRefGoogle Scholar
  122. Stengel A, Taché Y (2009) Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu Rev Physiol 71:219–239PubMedCrossRefGoogle Scholar
  123. Straub RH, Wiest R, Strauch UG, Härle P, Schölmerich J (2006) The role of the sympathetic nervous system in intestinal inflammation. Gut 55:1640–1649PubMedCrossRefGoogle Scholar
  124. Su C, Brandt LJ (1995) Escherichia coli O157:H7 infection in humans. Ann Intern Med 123:698–714PubMedGoogle Scholar
  125. Sullivan SK, Smith PL (1986) Bicarbonate secretion by rabbit proximal colon. Am J Physiol 251:G436–G445PubMedGoogle Scholar
  126. Taché Y, Brunnhuber S (2008) From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann NY Acad Sci 1148:29–41PubMedCrossRefGoogle Scholar
  127. Taché Y, Perdue MH (2004) Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function. Neurogastroenterol Motil 16(Suppl 1):137–142PubMedCrossRefGoogle Scholar
  128. Unsal H, Balkaya M, Unsal C, Biyik H, Başbülbül G, Poyrazoğlu E (2008) The short-term effects of different doses of dexamethasone on the numbers of some bacteria in the ileum. Dig Dis Sci 53:1842–1845PubMedCrossRefGoogle Scholar
  129. van den Wijngaard RM, Klooker TK, de Jonge WJ, Boeckxstaens GE (2010) Peripheral relays in stress-induced activation of visceral afferents in the gut. Auton Neurosci 153:99–105PubMedCrossRefGoogle Scholar
  130. Walker AK, Nakamura T, Hodgson DM (2010) Neonatal lipopolysaccharide exposure alters central cytokine responses to stress in adulthood in Wistar rats. Stress (in press)Google Scholar
  131. Wells JM, Loonen LM, Karczewski JM (2010) The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. Int J Med Microbiol 300:41–48PubMedCrossRefGoogle Scholar
  132. Wolter HJ (1985) Adrenocorticotropin and alpha-melanotropin in the myenteric plexus of the rat duodenum: an electron microscopic study. Brain Res 360:10–14PubMedCrossRefGoogle Scholar
  133. Yuan PQ, Wu SV, Wang L, Taché Y (2010) Corticotropin releasing factor in the rat colon: expression, localization and upregulation by endotoxin. Peptides 31:322–331PubMedCrossRefGoogle Scholar
  134. Zhang XH, Zhang XF, Zhang JQ, Tian YM, Xue H, Yang N, Zhu JX (2008) Beta-adrenoceptors, but not dopamine receptors, mediate dopamine-induced ion transport in late distal colon of rats. Cell Tissue Res 334:25–35PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Pharmacy PracticeTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulUSA

Personalised recommendations