Cell and Tissue Research

, Volume 343, Issue 1, pp 43–55 | Cite as

Invariant natural killer T cells: bridging innate and adaptive immunity



Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.


CD1d Glycolipids Immunomodulation Innate immunity Invariant natural killer T cells 


  1. Abbas AK, Lichtman AH, Pillai S (2010) Cellular and molecular immunology, 6th edn. Saunders, Philadelphia, PAGoogle Scholar
  2. Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200:895–904PubMedCrossRefGoogle Scholar
  3. Arrenberg P, Halder R, Kumar V (2009) Cross-regulation between distinct natural killer T cell subsets influences immune response to self and foreign antigens. J Cell Physiol 218:246–250PubMedCrossRefGoogle Scholar
  4. Bai L, Sagiv Y, Liu Y, Freigang S, Yu KO, Teyton L, Porcelli SA, Savage PB, Bendelac A (2009) Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen αGalCer. Proc Natl Acad Sci USA 106:10254–10259PubMedCrossRefGoogle Scholar
  5. Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD (2010) CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11:303–312PubMedCrossRefGoogle Scholar
  6. Behar SM, Porcelli SA (2007) CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 314:215–250PubMedCrossRefGoogle Scholar
  7. Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1:177–186PubMedCrossRefGoogle Scholar
  8. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336PubMedCrossRefGoogle Scholar
  9. Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, Thomas JW, Unutmaz D, Van Kaer L, Joyce S (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 174:4694–4705Google Scholar
  10. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedCrossRefGoogle Scholar
  11. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237PubMedCrossRefGoogle Scholar
  12. Brutkiewicz RR (2006) CD1d ligands: the good, the bad, and the ugly. J Immunol 177:769–775PubMedGoogle Scholar
  13. Cerundolo V, Salio M (2007) Harnessing NKT cells for therapeutic applications. Curr Top Microbiol Immunol 314:325–340PubMedCrossRefGoogle Scholar
  14. Cerundolo V, Silk JD, Masri SH, Salio M (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9:28–38PubMedCrossRefGoogle Scholar
  15. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosylceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517PubMedCrossRefGoogle Scholar
  16. Chang WS, Kim JY, Kim YJ, Kim YS, Lee JM, Azuma M, Yagita H, Kang CY (2008) Cutting edge: programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181:6707–6710PubMedGoogle Scholar
  17. Chiba A, Dascher CC, Besra GS, Brenner MB (2008) Rapid NKT cell responses are self-terminating during the course of microbial infection. J Immunol 181:2292–2302PubMedGoogle Scholar
  18. Choi HJ, Xu H, Geng Y, Colmone A, Cho H, Wang CR (2008) Bacterial infection alters the kinetics and function of iNKT cell responses. J Leukoc Biol 84:1462–1471PubMedCrossRefGoogle Scholar
  19. Coppieters K, Dewint P, Van Beneden K, Jacques P, Seeuws S, Verbruggen G, Deforce D, Elewaut D (2007a) NKT cells: manipulable managers of joint inflammation. Rheumatology 46:565–571PubMedCrossRefGoogle Scholar
  20. Coppieters K, Van Beneden K, Jacques P, Dewint P, Vervloet A, Vander Cruyssen B, Van Calenbergh S, Chen G, Franck RW, Verbruggen G, Deforce D, Matthys P, Tsuji M, Rottiers P, Elewaut D (2007b) A single early activation of invariant NK T cells confers long-term protection against collagen-induced arthritis in a ligand-specific manner. J Immunol 179:2300–2309PubMedGoogle Scholar
  21. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, Godfrey DI (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA 105:11287–11292PubMedCrossRefGoogle Scholar
  22. Crowe NY, Uldrich AP, Kyparissoudis K, Hammond KJL, Hayakawa K, Sidobre S, Keating R, Kronenberg M, Smyth MJ, Godfrey DI (2003) Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J Immunol 171:4020–4027PubMedGoogle Scholar
  23. Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, Godfrey DI, Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288PubMedCrossRefGoogle Scholar
  24. Driver JP, Scheuplein F, Chen YG, Grier AE, Wilson SB, Serreze DV (2010) Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette. Diabetes 59:423–432PubMedCrossRefGoogle Scholar
  25. Faveeuw C, Angeli V, Fontaine J, Maliszewski C, Capron A, Van Kaer L, Moser M, Capron M, Trottein F (2002) Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol 169:906–912PubMedGoogle Scholar
  26. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SHE, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 101:10685–10690PubMedCrossRefGoogle Scholar
  27. Fox LM, Cox DG, Lockridge JL, Wang X, Chen X, Scharf L, Trott DL, Ndonye RM, Veerapen N, Besra GS, Howell AR, Cook ME, Adams EJ, Hildebrand WH, Gumperz JE (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228PubMedCrossRefGoogle Scholar
  28. Fujii S (2008) Exploiting dendritic cells and natural killer T cells in immunotherapy against malignancies. Trends Immunol 29:242–249PubMedCrossRefGoogle Scholar
  29. Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002) Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat Immunol 3:867–874PubMedCrossRefGoogle Scholar
  30. Gabriel CL, Wu L, Parekh VV, Van Kaer L (2010) Invariant natural killer T cell-based therapy of autoimmune diseases. Curr Immunol Rev 6:88–101CrossRefGoogle Scholar
  31. Gapin L (2010) iNKT cell autoreactivity: what is 'self' and how is it recognized? Nat Rev Immunol 10:272–277PubMedCrossRefGoogle Scholar
  32. Giaccone G, Punt CJA, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BME, Scheper RJ, van der Vliet HJJ, van den Eertwegh AJM, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM (2002) A phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709PubMedGoogle Scholar
  33. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388PubMedGoogle Scholar
  34. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what's in a name? Nat Rev Immunol 4:231–237PubMedCrossRefGoogle Scholar
  35. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206PubMedCrossRefGoogle Scholar
  36. Grajewski RS, Hansen AM, Agarwal RK, Kronenberg M, Sidobre S, Su SB, Silver PB, Tsuji M, Franck RW, Lawton AP, Chan CC, Caspi RR (2008) Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses. J Immunol 181:4791–4797PubMedGoogle Scholar
  37. Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA, Cardell S, Brenner MB, Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedCrossRefGoogle Scholar
  38. Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636PubMedCrossRefGoogle Scholar
  39. Halder RC, Aguilera C, Maricic I, Kumar V (2007) Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312PubMedCrossRefGoogle Scholar
  40. Harada M, Seino KI, Wakao H, Sakata S, Ishizuka Y, Ito T, Kojo S, Nakayama T, Taniguchi M (2004) Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int Immunol 16:241–247PubMedCrossRefGoogle Scholar
  41. Haraguchi K, Takahashi T, Matsumoto A, Asai T, Kanda Y, Kurokawa M, Ogawa S, Oda H, Taniguchi M, Hirai H, Chiba S (2005) Host-residual invariant NK T cells attenuate graft-versus-host immunity. J Immunol 175:1320–1328PubMedGoogle Scholar
  42. Hashimoto D, Asakura S, Miyake S, Yamamura T, Van Kaer L, Liu C, Tanimoto M, Teshima T (2005) Stimulation of host NKT cells by synthetic glycolipid regulates acute graft-versus-host disease by inducing Th2 polarization of donor T cells. J Immunol 174:551–556PubMedGoogle Scholar
  43. Im JS, Arora P, Bricard G, Molano A, Venkataswamy MM, Baine I, Jerud ES, Goldberg MF, Baena A, Yu KO, Ndonye RM, Howell AR, Yuan W, Cresswell P, Chang YT, Illarionov PA, Besra GS, Porcelli SA (2009) Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30:888–898PubMedCrossRefGoogle Scholar
  44. Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V (2001) Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194:1789–1799PubMedCrossRefGoogle Scholar
  45. Johnson TR, Hong S, Van Kaer L, Koezuka Y, Graham BS (2002) NK T cells contribute to expansion of CD8+ T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 76:4294–4303PubMedCrossRefGoogle Scholar
  46. Joshi SK, Lang GA, Larabee JL, Devera TS, Aye LM, Shah HB, Ballard JD, Lang ML (2009) Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy. PLoS Pathog 5:e1000588PubMedCrossRefGoogle Scholar
  47. Joyce S, Van Kaer L (2008) Invariant natural killer T cells trigger adaptive lymphocytes to churn up bile. Cell Host Microbe 3:275–277PubMedCrossRefGoogle Scholar
  48. Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X (2007) Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J Immunol 178:1048–1058PubMedGoogle Scholar
  49. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626–1629PubMedCrossRefGoogle Scholar
  50. Kim S, Lalani S, Parekh VV, Vincent TL, Wu L, Van Kaer L (2008a) Impact of bacteria on the phenotype, functions and therapeutic activities of iNKT cells in mice. J Clin Invest 118:2301–2315PubMedGoogle Scholar
  51. Kim S, Lalani S, Parekh VV, Wu L, Van Kaer L (2008b) Glycolipid ligands of invariant natural killer T cells as vaccine adjuvants. Expert Rev Vaccines 7:1519–1532PubMedCrossRefGoogle Scholar
  52. Kinjo Y, Wu DY, Kim G, Xing G-W, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong C-H, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525PubMedCrossRefGoogle Scholar
  53. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia M, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Buetler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7:978–986PubMedCrossRefGoogle Scholar
  54. Kojo S, Elly C, Harada Y, Langdon WY, Kronenberg M, Liu YC (2009) Mechanisms of NKT cell anergy induction involve Cbl-b-promoted monoubiquitination of CARMA1. Proc Natl Acad Sci USA 106:17847–17851PubMedCrossRefGoogle Scholar
  55. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS, Pandolfi PP, Sant'Angelo DB (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9:1055–1064PubMedCrossRefGoogle Scholar
  56. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 26:877–900CrossRefGoogle Scholar
  57. Kuns RD, Morris ES, Macdonald KP, Markey KA, Morris HM, Raffelt NC, Banovic T, Don AL, Rowe V, Burman AC, Clouston AD, Farah C, Besra GS, Illarionov PA, Smyth MJ, Porcelli SA, Hill GR (2009) Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after α-galactosylceramide administration. Blood 113:5999–6010PubMedCrossRefGoogle Scholar
  58. La Cava A, Van Kaer L, Shi FD (2006) CD4+CD25+ Tregs and NKT cells: regulators regulating regulators. Trends Immunol 27:322–327PubMedCrossRefGoogle Scholar
  59. Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 195:637–641PubMedCrossRefGoogle Scholar
  60. Lombardi V, Stock P, Singh AK, Kerzerho J, Yang W, Sullivan BA, Li X, Shiratsuchi T, Hnatiuk NE, Howell AR, Yu KO, Porcelli SA, Tsuji M, Kronenberg M, Wilson SB, Akbari O (2010) A CD1d-dependent antagonist inhibits the activation of invariant NKT cells and prevents development of allergen-induced airway hyperreactivity. J Immunol 184:2107–2115PubMedCrossRefGoogle Scholar
  61. Lotter H, Gonzalez-Roldan N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5:e1000434PubMedCrossRefGoogle Scholar
  62. Major AS, Joyce S, Van Kaer L (2006) Lipid metabolism, atherogenesis and CD1-restricted antigen presentation. Trends Mol Med 12:270–278PubMedCrossRefGoogle Scholar
  63. Mallevaey T, Zanetta JP, Faveeuw C, Fontaine J, Maes E, Platt F, Capron M, de-Moraes ML, Trottein F (2006) Activation of invariant NKT cells by the helminth parasite Schistosoma mansoni. J Immunol 176:2476–2485PubMedGoogle Scholar
  64. Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M, Locksley RM, Kronenberg M (2003) Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100:8395–8400PubMedCrossRefGoogle Scholar
  65. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr Opin Immunol 20:358–368PubMedCrossRefGoogle Scholar
  66. Mattner J, DeBord KL, Ismail N, Goff RD, Cantu CI, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Buetler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529PubMedCrossRefGoogle Scholar
  67. Meyer EH, DeKruyff RH, Umetsu DT (2007) iNKT cells in allergic disease. Curr Top Microbiol Immunol 314:269–291PubMedCrossRefGoogle Scholar
  68. Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1- iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001PubMedCrossRefGoogle Scholar
  69. Motohashi S, Nakayama T (2008) Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Sci 99:638–645PubMedCrossRefGoogle Scholar
  70. Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, Hanaoka H, Shimizu N, Suzuki M, Yoshino I, Taniguchi M, Fujisawa T, Nakayama T (2009) A phase I-II study of α-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182:2492–2501PubMedCrossRefGoogle Scholar
  71. Muindi K, Cernadas M, Watts GF, Royle L, Neville DC, Dwek RA, Besra GS, Rudd PM, Butters TD, Brenner MB (2010) Activation state and intracellular trafficking contribute to the repertoire of endogenous glycosphingolipids presented by CD1d. Proc Natl Acad Sci USA 107:3052–3057PubMedCrossRefGoogle Scholar
  72. Murphy K, Travers P, Walport M (2007) Janeway's immunobiology, 7th edn. Garland, New York, NYGoogle Scholar
  73. Nagarajan NA, Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178:2706–2713PubMedGoogle Scholar
  74. Naidenko OV, Maher JK, Ernst WA, Sakai T, Modlin RL, Kronenberg M (1999) Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J Exp Med 190:1069–1080PubMedCrossRefGoogle Scholar
  75. Natori T, Koezuka Y, Higa T (1993) Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett 34:5591–5592CrossRefGoogle Scholar
  76. Nieda M, Okai M, Tazbirkova A, Lin H, Yamauro A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ (2004) Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389PubMedCrossRefGoogle Scholar
  77. Nieuwenhuis EE, Matsumoto T, Lindenbergh D, Willemsen R, Kaser A, Simons-Oosterhuis Y, Brugman S, Yamaguchi K, Ishikawa H, Aiba Y, Koga Y, Samsom JN, Oshima K, Kikuchi M, Escher JC, Hattori M, Onderdonk AB, Blumberg RS (2009) Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest 119:1241–1250PubMedCrossRefGoogle Scholar
  78. Nieuwenhuis EES, Gillessen S, Scheper RJ, Exley MA, Taniguchi M, Balk SP, Strominger JL, Dranoff G, Blumberg RS, Wilson SB (2005) CD1d and CD1d-restricted iNKT-cells play a pivotal role in contact hypersensitivity. Exp Dermatol 14:250–258PubMedCrossRefGoogle Scholar
  79. Nowak M, Stein-Streilein J (2007) Invariant NKT cells and tolerance. Int Rev Immunol 26:95–119PubMedCrossRefGoogle Scholar
  80. Oki S, Chiba A, Yamamura T, Miyake S (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 113:1631–1640PubMedGoogle Scholar
  81. Osman Y, Kawamura T, Naito T, Takeda K, Van Kaer L, Okumura K, Abo T (2000) Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur J Immunol 30:1919–1928PubMedCrossRefGoogle Scholar
  82. Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, Sheehan KC, Capron M, Ryffel B, Faveeuw C, Leite de Moraes M, Platt F, Trottein F (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27:597–609PubMedCrossRefGoogle Scholar
  83. Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang C-R, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583PubMedCrossRefGoogle Scholar
  84. Parekh VV, Lalani S, Van Kaer L (2007) The in vivo response of invariant natural killer T cells to glycolipid antigens. Int Rev Immunol 26:31–48PubMedCrossRefGoogle Scholar
  85. Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Kaer LV (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826PubMedCrossRefGoogle Scholar
  86. Pillai AB, George TI, Dutt S, Teo P, Strober S (2007) Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol 178:6242–6251PubMedGoogle Scholar
  87. Raghuraman G, Geng Y, Wang C-R (2006) IFN-β-mediated up-regulation of CD1d in bacteria-infected APCs. J Immunol 177:7841–7848PubMedGoogle Scholar
  88. Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5:459–471PubMedCrossRefGoogle Scholar
  89. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, Veerapen N, Besra GS, Platt FM, Cerundolo V (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104:20490–20495PubMedCrossRefGoogle Scholar
  90. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403PubMedCrossRefGoogle Scholar
  91. Schmieg J, Yang G, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J Exp Med 198:1631–1641PubMedCrossRefGoogle Scholar
  92. Schmieg J, Yang G, Franck RW, Van Rooijen N, Tsuji M (2005) Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci USA 102:1127–1132PubMedCrossRefGoogle Scholar
  93. Singh AK, Yang J-Q, Parekh VV, Wei J, Wang C-R, Joyce S, Singh RR, Van Kaer L (2005) The natural killer T cell ligand α-galactosylceramide prevents or promotes pristane-induced lupus in mice. Eur J Immunol 35:1143–1154PubMedCrossRefGoogle Scholar
  94. Sireci G, Russo D, Dieli F, Porcelli SA, Taniguchi M, La Manna MP, Di Liberto D, Scarpa F, Salerno A (2007) Immunoregulatory role of Jα281 T cells in aged mice developing lupus-like nephritis. Eur J Immunol 37:425–433PubMedCrossRefGoogle Scholar
  95. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701PubMedCrossRefGoogle Scholar
  96. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198:1069–1076PubMedCrossRefGoogle Scholar
  97. Sullivan BA, Nagarajan NA, Wingender G, Wang J, Scott I, Tsuji M, Franck RW, Porcelli SA, Zajonc DM, Kronenberg M (2010) Mechanisms for glycolipid antigen-driven cytokine polarization by Vα14i NKT cells. J Immunol 184:141–153PubMedCrossRefGoogle Scholar
  98. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513PubMedCrossRefGoogle Scholar
  99. Tashiro T, Sekine-Kondo E, Shigeura T, Nakagawa R, Inoue S, Omori-Miyake M, Chiba T, Hongo N, Fujii S, Shimizu K, Yoshiga Y, Sumida T, Mori K, Watarai H, Taniguchi M (2010) Induction of Th1-biased cytokine production by α-carba-GalCer, a neoglycolipid ligand for NKT cells. Int Immunol 22:319–328PubMedCrossRefGoogle Scholar
  100. Terabe M, Berzofsky JA (2008) The role of NKT cells in tumor immunity. Adv Cancer Res 101:277–348PubMedCrossRefGoogle Scholar
  101. Tupin E, Kinjo T, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417PubMedCrossRefGoogle Scholar
  102. Ulrich AP, Crowe NY, Kyparissoudis K, Pellicci DG, Zhan Y, Lew AM, Bouillet P, Strasser A, Smyth MJ, Godfrey DI (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175:3092–3101Google Scholar
  103. Van Kaer L (2005) α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5:31–42PubMedCrossRefGoogle Scholar
  104. Van Kaer L (2007) NKT cells: T lymphocytes with innate effector functions. Curr Opin Immunol 19:354–364PubMedCrossRefGoogle Scholar
  105. Varthaman A, Khallou-Laschet J, Clement M, Fornasa G, Kim HJ, Gaston AT, Dussiot M, Caligiuri G, Herbelin A, Kaveri S, Cantor H, Nicoletti A (2010) Control of T cell reactivation by regulatory Qa-1-restricted CD8+ T cells. J Immunol 184:6585–6591PubMedCrossRefGoogle Scholar
  106. Veldt BJ, van der Vliet HJ, von Blomberg BM, van Vlierberghe H, Gerken G, Nishi N, Hayashi K, Scheper RJ, de Knegt RJ, van den Eertwegh AJ, Janssen HL, van Nieuwkerk CM (2007) Randomized placebo controlled phase I/II trial of α-galactosylceramide for the treatment of chronic hepatitis C. J Hepatol 47:356–365PubMedCrossRefGoogle Scholar
  107. Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 22:68–78PubMedCrossRefGoogle Scholar
  108. Wilson MT, Singh AK, Van Kaer L (2002) Immunotherapy with ligands of natural killer T cells. Trends Mol Med 8:225–231PubMedCrossRefGoogle Scholar
  109. Wilson MT, Johansson C, Olivares-Villagomez D, Singh AK, Stanic AK, Wang CR, Joyce S, Wick MJ, Van Kaer L (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 100:10913–10918PubMedCrossRefGoogle Scholar
  110. Woltman AM, Ter Borg MJ, Binda RS, Sprengers D, von Blomberg BM, Scheper RJ, Hayashi K, Nishi N, Boonstra A, van der Molen R, Janssen HL (2009) α-Galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial. Antivir Ther 14:809–818PubMedCrossRefGoogle Scholar
  111. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181PubMedCrossRefGoogle Scholar
  112. Yu KO, Im JS, Molano A, Dutronc Y, Illarionov PA, Forestier C, Fujiwara N, Arias I, Miyake S, Yamamura T, Chang YT, Besra GS, Porcelli SA (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc Natl Acad Sci USA 102:3383–3388PubMedCrossRefGoogle Scholar
  113. Zhou D, Mattner J, Cantu C, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y, Yamashita T, Teneberg S, Wang D, Proia R, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations