Advertisement

Cell and Tissue Research

, Volume 341, Issue 2, pp 223–237 | Cite as

Stereological and allometric studies on neurons and axo-dendritic synapses in the superior cervical ganglia of rats, capybaras and horses

  • Andrzej Loesch
  • Terry M. Mayhew
  • Helen Tang
  • Fernando V. Lobo Ladd
  • Aliny A. B. Lobo Ladd
  • Mariana Pereira de Melo
  • Andrea Almeida P. da Silva
  • Antonio Augusto CoppiEmail author
Regular Article

Abstract

The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (Vscg). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067×V scg 0.781 and that for synapses is N=20,095,000×V scg 1.328 , the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.

Keywords

Superior cervical ganglion Stereology Neurons Synapses Allometry Rat (Wistar, male) Capybara (male) Horse (male) 

References

  1. Abrahão LM, Nyengaard JR, Sasahara TH, Gomes SP, Oliveira FR, Ladd FV, Ladd AA, Melo MP, Machado MR, Melo SR, Ribeiro AA (2009) Asymmetric post-natal development of the superior cervical ganglion of pacas (Agouti paca). Int J Dev Neurosci 27:37–45CrossRefPubMedGoogle Scholar
  2. Andrews TJ (1996) Autonomic nervous system as a model of neuronal aging: the role of target tissues and neurotrophic factors. Microsc Res Tech 35:2–19CrossRefPubMedGoogle Scholar
  3. Baddeley AJ, Gundersen HJG, Cruz-Orive LM (1986) Estimation of surface area from vertical sections. J Microsc 142:259–276PubMedGoogle Scholar
  4. Boyd HD, McLachlan EM, Keast JR, Inokuchi H (1996) Three electrophysiological classes of guinea pig sympathetic postganglionic neurone have distinct morphologies. J Comp Neurol 369:372–387CrossRefPubMedGoogle Scholar
  5. Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol 25:821–828CrossRefPubMedGoogle Scholar
  6. Field PM, Raisman G (1985) The density of reinnervation of adult rat superior cervical sympathetic ganglionic neurons is limited by the number of available postsynaptic sites. Brain Res 360:398–402CrossRefPubMedGoogle Scholar
  7. Fioretto ET, Abreu RN, Castro MF, Guidi WL, Ribeiro AA (2007) Macro- and microstructure of the superior cervical ganglion in dogs, cats and horses during maturation. Cells Tissues Organs 186:129–140CrossRefPubMedGoogle Scholar
  8. Forehand CJ (1985) Density of somatic innervation on mammalian autonomic ganglion cells is inversely related to dendritic complexity and preganglionic convergence. J Neurosci 5:3403–3408PubMedGoogle Scholar
  9. Gabella G, Trigg P, Mcphail H (1988) Quantitative cytology of ganglion neurons and satellite glial cells in the superior cervical ganglion of the sheep. Relationship with ganglion neuron size. J Neurocytol 17:753–769CrossRefPubMedGoogle Scholar
  10. Gagliardo KM, Guidi WL, Da Silva RA, Ribeiro AA (2003) Macro and microstructural organization of the dog’s caudal mesenteric ganglion complex (Canis familiaris). Anat Histol Embryol 32:236–243CrossRefPubMedGoogle Scholar
  11. Gagliardo KM, Carvalho BJC, Souza RR, Ribeiro AA (2005) Postnatal-related changes in the size and total number of neurons in the caudal mesenteric ganglion of dogs: total number of neurons can be predicted from body weight and ganglion volume. Anat Rec 286:917–929CrossRefGoogle Scholar
  12. Gibbins IL, Matthew SE (1996) Dendritic morphology of presumptive vasoconstrictor and pilomotor neurons and their relations with neuropeptide-containing preganglionic fibres in lumbar sympathetic ganglia of guinea-pigs. Neuroscience 70:999–1012CrossRefPubMedGoogle Scholar
  13. Gibbins IL, Morris JL (2006) Structure of peripheral synapses: autonomic ganglia. Cell Tissue Res 326:205–220CrossRefPubMedGoogle Scholar
  14. Gibbins IL, Rodgers HF, Matthew SE, Murphy SM (1998) Synaptic organisation of lumbar sympathetic ganglia of guinea pigs: serial section ultrastructural analysis of dye-filled sympathetic final motor neurons. J Comp Neurol 402:285–302CrossRefPubMedGoogle Scholar
  15. Gibbins IL, Teo EEH, Jobling P, Morris JL (2003) Synaptic density, convergence, and dendritic complexity of prevertebral sympathetic neurons. J Comp Neurol 455:285–298CrossRefPubMedGoogle Scholar
  16. Gundersen HJG (1977) Notes of the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223Google Scholar
  17. Gundersen HJG (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45PubMedGoogle Scholar
  18. Gundersen HJG (1988) The nucleator. J Microsc 151:3–21PubMedGoogle Scholar
  19. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263PubMedGoogle Scholar
  20. Gundersen HJG, Jensen EB, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology: reconsidered. J Microsc 193:199–211CrossRefPubMedGoogle Scholar
  21. Hedger JH, Webber RH (1976) Anatomical study of the cervical sympathetic trunk and ganglia in the albino rat (Mus norvegicus albinus). Acta Anat (Basel) 96:206–217CrossRefGoogle Scholar
  22. Hilbe M, Guscetti F, Wunderlin S, Ehrensperger F (2005) Synaptophysin: an immunohistochemical marker for animal dysautonomias. J Comp Pathol 132:223–227CrossRefPubMedGoogle Scholar
  23. Howard CV, Reed MG (2005) Unbiased stereology. Three-dimensional measurement in microscopy. Bios Scientific, Liverpool, OxfordGoogle Scholar
  24. Hui E, Bai J, Chapman ER (2006) Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. J Biophys 91:1767–1777CrossRefGoogle Scholar
  25. Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24:687–700CrossRefPubMedGoogle Scholar
  26. Leube RE (1994) Expression of the synaptophysin gene family is not restricted to neuronal and neuroendocrine differentiation in rat and human. Differentiation 56:163–71CrossRefPubMedGoogle Scholar
  27. Lima AR, Nyengaard JR, Jorge AA, Balieiro JC, Peixoto C, Fioretto ET, Ambrósio CE, Miglino MA, Zatz M, Ribeiro AA (2007) Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers. Growth Horm IGF Res 17:480–491CrossRefPubMedGoogle Scholar
  28. Matthews MR (1983) The ultrastructure of junctions in sympathetic ganglia of mammals. In: Elvin LG (ed) Autonomic ganglia. Wiley Chichester, New York, pp 27–66Google Scholar
  29. Mayhew TM (1979) Stereological approach to the study of synapse morphometry with particular regard to estimating number in a volume and on a surface. J Neurocytol 8:121–138CrossRefPubMedGoogle Scholar
  30. Mayhew TM (1991) The accurate prediction of Purkinje cell number from cerebellar weight can be achieved with the fractionator. J Comp Neurol 308:162–168CrossRefPubMedGoogle Scholar
  31. Mayhew TM (1996) How to count synapses unbiasedly and efficiently at the ultrastructural level: proposal for a standard sampling and counting protocol. J Neurocytol 25:793–804CrossRefPubMedGoogle Scholar
  32. McLachlan EM (1995) Autonomic ganglia. Harwood, LuxembourgGoogle Scholar
  33. McLachlan EM, Meckler R (1989) Characteristics of synaptic input to three classes of sympathetic neurone in the coeliac ganglion of the guinea-pig. J Physiol (Lond) 415:109–129Google Scholar
  34. Melo SR, Nyengaard JR, Roza OF, Ladd FV, Abrahão LM, Machado MR, Sasahara TH, Melo MP, Ribeiro AA (2009) The developing left superior cervical ganglion of pacas (Agouti paca). Anat Rec 292:966–975CrossRefGoogle Scholar
  35. Miolan J, Niel J (1996) The mammalian sympathetic prevertebral ganglia: integrative properties and role in the nervous control of digestive tract motility. J Auton Nerv Syst 58:125–38CrossRefPubMedGoogle Scholar
  36. Mochida S, Nonomura Y, Kobayashi H (1994) Analysis of the mechanism for acetylcholine release at the synapse formed between rat sympathetic neurons in culture. Microsc Res Tech 29:94–102CrossRefPubMedGoogle Scholar
  37. Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527CrossRefPubMedGoogle Scholar
  38. Nyengaard JR, Gundersen HJG (1992) The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J Microsc 165:427–431Google Scholar
  39. Östberg AJC, Raisman G, Field PM, Iversen LL, Zigmond RE (1976) A quantitative comparison of the formation of synapses in the rat superior cervical ganglion by its own and by foreign nerve fibres. Brain Res 107:445–470CrossRefPubMedGoogle Scholar
  40. Purves D, Lichtman JW (1985) Geometrical differences among homologous neurons in mammals. Science 228:298–302CrossRefPubMedGoogle Scholar
  41. Purves D, Rubin E, Snider WD, Lichtman J (1986) Relation of animal size to convergence, divergence and neuronal number in peripheral sympathetic pathways. J Neurosci 6:158–163PubMedGoogle Scholar
  42. Rao H, Pio J, Kessler JP (1999) Postnatal development of synaptophysin immunoreactivity in the rat nucleus tractus solitarii and caudal ventrolateral medulla. Brain Res Dev Brain 112:281–285CrossRefGoogle Scholar
  43. Ribeiro AA (2006) Size and number of binucleate and mononucleate superior cervical ganglion neurons in young capybaras. Anat Embryol 211:607–617CrossRefPubMedGoogle Scholar
  44. Ribeiro AA, Elias CF, Liberti EA, Guidi WL, De Souza RR (2002) Structure and ultrastructure of the celiac mesenteric ganglion complex in the domestic dog (Canis familiaris). Anat Histol Embryol 31:344–349CrossRefPubMedGoogle Scholar
  45. Ribeiro AA, Davis C, Gabella G (2004) Estimate of size and total number of neurons in superior cervical ganglion of rat, capybara and horse. Anat Embryol 208:367–380CrossRefPubMedGoogle Scholar
  46. Sasahara TH, De Souza RR, Machado MR, Da Silva RA, Guidi WL, Ribeiro AA (2003) Macro- and microstructural organization of the rabbit's celiac-mesenteric ganglion complex (Oryctolagus cuniculus). Ann Anat 185:441–448CrossRefPubMedGoogle Scholar
  47. Scherle W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26:57–60PubMedGoogle Scholar
  48. Siklós L, Párducz A, Halász N, Rickmann M, Joó F, Wolff JR (1990) An unbiased estimation of the total number of synapses in the superior cervical ganglion of adult rats established by the dissector method. Lack of change after long-lasting sodium bromide administration. J Neurocytol 19:443–454CrossRefPubMedGoogle Scholar
  49. Smolen AJ, Beaston-Wimmer P (1986) Dendritic development in the rat superior cervical ganglion. Brain Res 394:245–252PubMedGoogle Scholar
  50. Smolen AJ, Raisman G (1980) Synapse formation in the rat superior cervical ganglion during normal development and after neonatal deafferentation. Brain Res 181:315–323CrossRefPubMedGoogle Scholar
  51. Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research. Freeman, San FranciscoGoogle Scholar
  52. Steele C, Fioretto ET, Sasahara TH, Guidi WL, Lima AR de, Ribeiro AA, Loesch A (2006) On the atrophy of the internal carotid artery in capybara. Cell Tissue Res 326:737–748CrossRefGoogle Scholar
  53. Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD (1992) Allometric relationships of cell numbers and sizes in the mammalian lung. Am J Resp Cell Mol Biol 6:235–243Google Scholar
  54. Szabat E, Vanhatalo S, Soinila S (1998) The ontogenic appearance of tyrosine hydroxylase-, serotonin-, gamma-aminobutyric acid-, calcitonin gene-related peptide-, substance P-, and synaptophysin-immunoreactivity in rat pituitary gland. Int J Dev Neurosci 16:449–60CrossRefPubMedGoogle Scholar
  55. Tandrup T (1993) A method for unbiased and efficient estimation of number and mean volume of specified neuron subtypes in rat dorsal root ganglion. J Comp Neurol 329:269–276CrossRefPubMedGoogle Scholar
  56. Tandrup T, Braendgaard H (1994) Number and volume of rat dorsal root ganglion cells in acrylamide intoxication. J Neurocytol 23:242–248CrossRefPubMedGoogle Scholar
  57. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187CrossRefPubMedGoogle Scholar
  58. Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 99:1012–1016CrossRefPubMedGoogle Scholar
  59. Toscano CP, Melo MP, Matera JM, Loeschm A, Ribeiro AA (2009) The developing and restructuring superior cervical ganglion of guinea pigs (Cavia porcellus var. albinus). Int J Dev Neurosci 27:329–336CrossRefPubMedGoogle Scholar
  60. Weidenmann B, Frank WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of M 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028CrossRefGoogle Scholar
  61. Wright LL, Smolen AJ (1983) Neonatal testosterone treatment increases neuron and synapse numbers in male rat superior cervical ganglion. Brain Res 8:145–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrzej Loesch
    • 1
  • Terry M. Mayhew
    • 2
  • Helen Tang
    • 1
  • Fernando V. Lobo Ladd
    • 3
  • Aliny A. B. Lobo Ladd
    • 3
  • Mariana Pereira de Melo
    • 4
  • Andrea Almeida P. da Silva
    • 3
  • Antonio Augusto Coppi
    • 3
    • 5
    Email author
  1. 1.Research Department of InflammationUniversity College London Medical SchoolLondonUK
  2. 2.School of Biomedical Sciences, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
  3. 3.Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA), Department of Surgery, College of Veterinary MedicineUniversity of São Paulo (USP)São PauloBrazil
  4. 4.Department of StatisticsInstitute of Mathematics and Statistics, USPSão PauloBrazil
  5. 5.Departamento de Cirurgia, Faculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloBrazil

Personalised recommendations