Advertisement

Cell and Tissue Research

, Volume 341, Issue 1, pp 33–48 | Cite as

Immunoreactivity for high-affinity choline transporter colocalises with VAChT in human enteric nervous system

  • Andrea M. Harrington
  • Margaret Lee
  • Sim-Yee Ong
  • Eric Yong
  • Pamela Farmer
  • Cristal J. Peck
  • Chung W. Chow
  • John M. Hutson
  • Bridget R. Southwell
Regular Article

Abstract

Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.

Keywords

Cholinergic nerves Enteric nervous system High affinity choline transporter Immunofluorescence Vesicular acetylcholine transporter Intestine Human 

Notes

Acknowledgements

Dr. Katerina Lips kindly supplied antibodies and advice for Western blotting. Out thanks are extended to Emma Clifton who assisted with Western blotting. The authors declare no competing interests.

References

  1. Anlauf M, Schafer MK, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111CrossRefPubMedGoogle Scholar
  2. Arvidsson U, Riedl M, Elde R, Meister B (1997) Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 378:454–467CrossRefPubMedGoogle Scholar
  3. Bazalakova MH, Blakely RD (2006) The high-affinity choline transporter: a critical protein for sustaining cholinergic signaling as revealed in studies of genetically altered mice. Handb Exp Pharmacol 2006 (175):525–544CrossRefGoogle Scholar
  4. Brehmer A, Schrodl F, Neuhuber W, Tooyama I, Kimura H (2004) Co-expression pattern of neuronal nitric oxide synthase and two variants of choline acetyltransferase in myenteric neurons of porcine ileum. J Chem Neuroanat 27:33–41CrossRefPubMedGoogle Scholar
  5. Cooke HJ (2000) Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci 915:77–80PubMedCrossRefGoogle Scholar
  6. De Fontgalland D, Wattchow DA, Costa M, Brookes SJ (2008) Immunohistochemical characterization of the innervation of human colonic mesenteric and submucosal blood vessels. Neurogastroenterol Motil 20:1212–1226CrossRefPubMedGoogle Scholar
  7. Distante S, Nasioulas S, Somers GR, Cameron DJ, Young MA, Forrest SM, Gardner RJ (1996) Familial adenomatous polyposis in a 5 year old child: a clinical, pathological, and molecular genetic study. J Med Genet 33:157–160CrossRefPubMedGoogle Scholar
  8. Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi H, Levey AI, Blakely RD (2003) Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 23:9697–9709PubMedGoogle Scholar
  9. Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96CrossRefPubMedGoogle Scholar
  10. Furness JB, Costa M, Eckenstein F (1983) Neurones localized with antibodies against choline acetyltransferase in the enteric nervous system. Neurosci Lett 40:105–109CrossRefPubMedGoogle Scholar
  11. Geisert EE Jr, Frankfurter A (1989) The neuronal response to injury as visualized by immunostaining of class III beta-tubulin in the rat. Neurosci Lett 102:137–141CrossRefPubMedGoogle Scholar
  12. Gunther K, Braunrieder G, Bittorf BR, Hohenberger W, Matzel KE (2003) Patients with familial adenomatous polyposis experience better bowel function and quality of life after ileorectal anastomosis than after ileoanal pouch. Colorectal Dis 5:38–44CrossRefPubMedGoogle Scholar
  13. Haberberger RV, Pfeil U, Lips KS, Kummer W (2002) Expression of the high-affinity choline transporter, CHT1, in the neuronal and non-neuronal cholinergic system of human and rat skin. J Invest Dermatol 119:943–948CrossRefPubMedGoogle Scholar
  14. Haga T, Noda H (1973) Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta 291:564–575CrossRefPubMedGoogle Scholar
  15. Harrington AM, Hutson JM, Southwell BR (2007) High affinity choline transporter immunoreactivity in rat ileum myenteric nerves. Cell Tissue Res 327:421–431CrossRefPubMedGoogle Scholar
  16. Hens J, Vanderwinden JM, De Laet MH, Scheuermann DW, Timmermans JP (2001) Morphological and neurochemical identification of enteric neurones with mucosal projections in the human small intestine. J Neurochem 76:464–471CrossRefPubMedGoogle Scholar
  17. Hirota CL, McKay DM (2006) Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 149:463–479CrossRefPubMedGoogle Scholar
  18. Hoover DB, Ganote CE, Ferguson SM, Blakely RD, Parsons RL (2004) Localization of cholinergic innervation in guinea pig heart by immunohistochemistry for high-affinity choline transporters. Cardiovasc Res 62:112–121CrossRefPubMedGoogle Scholar
  19. Hutson JM, Catto-Smith T, Gibb S, Chase J, Shin YM, Stanton M, King S, Sutcliffe J, Ong SY, Djaja S, Farmer P, Southwell B (2004) Chronic constipation: no longer stuck! Characterization of colonic dysmotility as a new disorder in children. J Pediatr Surg 39:795–799CrossRefPubMedGoogle Scholar
  20. Jonsson M, Norrgard O, Forsgren S (2007) Presence of a marked nonneuronal cholinergic system in human colon: study of normal colon and colon in ulcerative colitis. Inflamm Bowel Dis 13:1347–1356CrossRefPubMedGoogle Scholar
  21. Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74:675–696CrossRefPubMedGoogle Scholar
  22. King SK, Sutcliffe JR, Hutson JM (2005) Laparoscopic seromuscular colonic biopsies: a surgeon's experience. J Pediatr Surg 40:381–384CrossRefPubMedGoogle Scholar
  23. Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I (2001) The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Jpn J Pharmacol 85:24–28CrossRefPubMedGoogle Scholar
  24. Kobayashi Y, Okuda T, Fujioka Y, Matsumura G, Nishimura Y, Haga T (2002) Distribution of the high-affinity choline transporter in the human and macaque monkey spinal cord. Neurosci Lett 317:25–28CrossRefPubMedGoogle Scholar
  25. Kus L, Borys E, Ping Chu Y, Ferguson SM, Blakely RD, Emborg ME, Kordower JH, Levey AI, Mufson EJ (2003) Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system. J Comp Neurol 463:341–357CrossRefPubMedGoogle Scholar
  26. Li GL, Farooque M, Isaksson J, Olsson Y (2004) Changes in synapses and axons demonstrated by synaptophysin immunohistochemistry following spinal cord compression trauma in the rat and mouse. Biomed Environ Sci 17:281–290PubMedGoogle Scholar
  27. Li ZS, Furness JB (1998) Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 294:35–43CrossRefPubMedGoogle Scholar
  28. Lips KS, Pfeil U, Haberberger RV, Kummer W (2002) Localisation of the high-affinity choline transporter-1 in the rat skeletal motor unit. Cell Tissue Res 307:275–280CrossRefPubMedGoogle Scholar
  29. Lips KS, Pfeil U, Reiners K, Rimasch C, Kuchelmeister K, Braun-Dullaeus RC, Haberberger RV, Schmidt R, Kummer W (2003) Expression of the high-affinity choline transporter CHT1 in rat and human arteries. J Histochem Cytochem 51:1645–1654PubMedGoogle Scholar
  30. Matsuda H, Hirato J, Kuroiwa M, Nakazato Y (2006) Histopathological and immunohistochemical study of the enteric innervations among various types of aganglionoses including isolated and syndromic Hirschsprung disease. Neuropathology 26:8–23CrossRefPubMedGoogle Scholar
  31. Misawa H, Nakata K, Matsuura J, Nagao M, Okuda T, Haga T (2001) Distribution of the high-affinity choline transporter in the central nervous system of the rat. Neuroscience 105:87–98CrossRefPubMedGoogle Scholar
  32. Murphy EM, Defontgalland D, Costa M, Brookes SJ, Wattchow DA (2007) Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil 19:126–134CrossRefPubMedGoogle Scholar
  33. Neunlist M, Aubert P, Toquet C, Oreshkova T, Barouk J, Lehur PA, Schemann M, Galmiche JP (2003) Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 52:84–90CrossRefPubMedGoogle Scholar
  34. Okuda T, Haga T (2000) Functional characterization of the human high-affinity choline transporter. FEBS Lett 484:92–97CrossRefPubMedGoogle Scholar
  35. Okuda T, Haga T (2003) High-affinity choline transporter. Neurochem Res 28:483–488CrossRefPubMedGoogle Scholar
  36. Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I (2000) Identification and characterization of the high-affinity choline transporter. Nat Neurosci 3:120–125CrossRefPubMedGoogle Scholar
  37. Okuda T, Okamura M, Kaitsuka C, Haga T, Gurwitz D (2002) Single nucleotide polymorphism of the human high affinity choline transporter alters transport rate. J Biol Chem 277:45315–45322CrossRefPubMedGoogle Scholar
  38. Olsson C, Costa M, Brookes SJ (2004) Neurochemical characterization of extrinsic innervation of the guinea pig rectum. J Comp Neurol 470:357–371CrossRefPubMedGoogle Scholar
  39. Peck CJ, Samsuria SD, Harrington AM, King SK, Hutson JM, Southwell BR (2009) Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea-pig colon with ageing. Neurogastroenterol Motil 21:1075CrossRefPubMedGoogle Scholar
  40. Pfeil U, Lips KS, Eberling L, Grau V, Haberberger RV, Kummer W (2003) Expression of the high-affinity choline transporter, CHT1, in the rat trachea. Am J Respir Cell Mol Biol 28:473–477CrossRefPubMedGoogle Scholar
  41. Porter AJ, Wattchow DA, Brookes SJ, Schemann M, Costa M (1996) Choline acetyltransferase immunoreactivity in the human small and large intestine. Gastroenterology 111:401–408CrossRefPubMedGoogle Scholar
  42. Porter AJ, Wattchow DA, Brookes SJ, Costa M (1997) The neurochemical coding and projections of circular muscle motor neurons in the human colon. Gastroenterology 113:1916–1923CrossRefPubMedGoogle Scholar
  43. Porter AJ, Wattchow DA, Brookes SJ, Costa M (1999) Projections of nitric oxide synthase and vasoactive intestinal polypeptide-reactive submucosal neurons in the human colon. J Gastroenterol Hepatol 14:1180–1187CrossRefPubMedGoogle Scholar
  44. Porter AJ, Wattchow DA, Brookes SJ, Costa M (2002) Cholinergic and nitrergic interneurones in the myenteric plexus of the human colon. Gut 51:70–75CrossRefPubMedGoogle Scholar
  45. Ribeiro FM, Alves-Silva J, Volknandt W, Martins-Silva C, Mahmud H, Wilhelm A, Gomez MV, Rylett RJ, Ferguson SS, Prado VF, Prado MA (2003) The hemicholinium-3 sensitive high affinity choline transporter is internalized by clathrin-mediated endocytosis and is present in endosomes and synaptic vesicles. J Neurochem 87:136–146CrossRefPubMedGoogle Scholar
  46. Sang Q, Young HM (1998) The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat Rec 251:185–199CrossRefPubMedGoogle Scholar
  47. Schafer MK, Weihe E, Erickson JD, Eiden LE (1995) Human and monkey cholinergic neurons visualized in paraffin-embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. J Mol Neurosci 6:225–235CrossRefPubMedGoogle Scholar
  48. Schafer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84:361–376CrossRefPubMedGoogle Scholar
  49. Schemann M, Neunlist M (2004) The human enteric nervous system. Neurogastroenterol Motil 16:55–59CrossRefPubMedGoogle Scholar
  50. Schemann M, Sann H, Schaaf C, Mader M (1993) Identification of cholinergic neurons in enteric nervous system by antibodies against choline acetyltransferase. Am J Physiol 265:G1005–G1009PubMedGoogle Scholar
  51. Schneider J, Jehle EC, Starlinger MJ, Neunlist M, Michel K, Hoppe S, Schemann M (2001) Neurotransmitter coding of enteric neurones in the submucous plexus is changed in non-inflamed rectum of patients with Crohn's disease. Neurogastroenterol Motil 13:255–264CrossRefPubMedGoogle Scholar
  52. Southwell BR, Wong S, King SK, Ong SY, Lee M, Koh TL, Farmer PJ, Peck CJ, Sutcliffe JR, Stanton MP, Keck J, Cook DJ, Chow CW, Hutson JM (2010) Age-related decrease in nerve fibre density in human sigmoid colon circular muscle. Neurogastroenterol Motil 22:439–445CrossRefPubMedGoogle Scholar
  53. Stanton MP, Hengel PT, Southwell BR, Chow CW, Keck J, Hutson JM, Bornstein JC (2003) Cholinergic transmission to colonic circular muscle of children with slow-transit constipation is unimpaired, but transmission via NK2 receptors is lacking. Neurogastroenterol Motil 15:669–678CrossRefPubMedGoogle Scholar
  54. Tooyama I, Kimura H (2000) A protein encoded by an alternative splice variant of choline acetyltransferase mRNA is localized preferentially in peripheral nerve cells and fibers. J Chem Neuroanat 17:217–226CrossRefPubMedGoogle Scholar
  55. Vanden Berghe P, Klingauf J (2007) Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system. Neuroscience 145:88–99CrossRefGoogle Scholar
  56. Wattchow D, Brookes S, Murphy E, Carbone S, De Fontgalland D, Costa M (2008) Regional variation in the neurochemical coding of the myenteric plexus of the human colon and changes in patients with slow transit constipation. Neurogastroenterol Motil 20:1298–1305CrossRefPubMedGoogle Scholar
  57. Weihe E, Tao-Cheng JH, Schafer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93:3547–3552CrossRefPubMedGoogle Scholar
  58. Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154:1558–1571CrossRefPubMedGoogle Scholar
  59. Xie J, Guo Q (2004) Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane. J Biol Chem 279:28266–28275CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrea M. Harrington
    • 1
    • 2
    • 4
  • Margaret Lee
    • 1
    • 2
  • Sim-Yee Ong
    • 1
    • 2
  • Eric Yong
    • 1
    • 2
  • Pamela Farmer
    • 1
  • Cristal J. Peck
    • 1
    • 2
  • Chung W. Chow
    • 4
    • 5
  • John M. Hutson
    • 1
    • 3
    • 4
  • Bridget R. Southwell
    • 1
    • 2
  1. 1.F. Douglas Stephens Surgical Research LaboratoryMurdoch Childrens Research InstituteParkvilleAustralia
  2. 2.Gut Motility Laboratory, Surgical Research GroupMurdoch Childrens Research Institute, Royal Children’s HospitalParkvilleAustralia
  3. 3.Department of General Surgery and UrologyRoyal Childrens HospitalParkvilleAustralia
  4. 4.Department of PaediatricsUniversity of MelbourneParkvilleAustralia
  5. 5.Department of Anatomical PathologyRoyal Childrens HospitalParkvilleAustralia

Personalised recommendations