Advertisement

Cell and Tissue Research

, 339:93 | Cite as

The developmental roles of the extracellular matrix: beyond structure to regulation

  • Kwok Yeung Tsang
  • Martin C. H. Cheung
  • Danny Chan
  • Kathryn S. E. CheahEmail author
Review

Abstract

Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellula signaling.

Keywords

Extracellular matrix Development Morphogenesis Organogenesis Mouse model 

References

  1. Abrass CK, Berfield AK, Ryan MC, Carter WG, Hansen KM (2006) Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene. Kidney Int 70:1062–1071PubMedCrossRefGoogle Scholar
  2. Akimov SS, Belkin AM (2001) Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci 114:2989–3000PubMedGoogle Scholar
  3. Akita K, Holst A von, Furukawa Y, Mikami T, Sugahara K, Faissner A (2008) Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 26:798–809PubMedCrossRefGoogle Scholar
  4. Akiyama H, Chaboissier MC, Martin JF, Schedl A, Crombrugghe B de (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828PubMedCrossRefGoogle Scholar
  5. Akiyama T, Kamimura K, Firkus C, Takeo S, Shimmi O, Nakato H (2008) Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev Biol 313:408–419PubMedCrossRefGoogle Scholar
  6. Ambrosio AL, Taelman VF, Lee HX, Metzinger CA, Coffinier C, De Robertis EM (2008) Crossveinless-2 is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev Cell 15:248–260PubMedCrossRefGoogle Scholar
  7. Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF (2002) Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 16:673–680PubMedCrossRefGoogle Scholar
  8. Andressen C, Arnhold S, Puschmann M, Bloch W, Hescheler J, Fassler R, Addicks K (1998) Beta1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neurons. Neurosci Lett 251:165–168CrossRefGoogle Scholar
  9. Andrikopoulos K, Liu X, Keene DR, Jaenisch R, Ramirez F (1995) Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet 9:31–36PubMedCrossRefGoogle Scholar
  10. Aouacheria A, Geourjon C, Aghajari N, Navratil V, Deleage G, Lethias C, Exposito JY (2006) Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. Mol Biol Evol 23:2288–2302PubMedCrossRefGoogle Scholar
  11. Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358PubMedCrossRefGoogle Scholar
  12. Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F (2001) Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275–281PubMedCrossRefGoogle Scholar
  13. Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143:1399–1412PubMedCrossRefGoogle Scholar
  14. Aszodi A, Hunziker EB, Brakebusch C, Fassler R (2003) Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17:2465–2479PubMedCrossRefGoogle Scholar
  15. Aszodi A, Legate KR, Nakchbandi I, Fassler R (2006) What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 22:591–621PubMedCrossRefGoogle Scholar
  16. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  17. Banos CC, Thomas AH, Kuo CK (2008) Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today 84:228–244PubMedCrossRefGoogle Scholar
  18. Barrionuevo F, Taketo MM, Scherer G, Kispert A (2006) Sox9 is required for notochord maintenance in mice. Dev Biol 295:128–140PubMedCrossRefGoogle Scholar
  19. Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178PubMedCrossRefGoogle Scholar
  20. Bi W, Deng JM, Zhang Z, Behringer RR, Crombrugghe B de (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89PubMedCrossRefGoogle Scholar
  21. Bi Y, Stuelten CH, Kilts T, Wadhwa S, Iozzo RV, Robey PG, Chen XD, Young MF (2005) Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem 280:30481–30489PubMedCrossRefGoogle Scholar
  22. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227PubMedCrossRefGoogle Scholar
  23. Bier E (2008) Intriguing extracellular regulation of BMP signaling. Dev Cell 15:176–177PubMedCrossRefGoogle Scholar
  24. Bridgewater LC, Walker MD, Miller GC, Ellison TA, Holsinger LD, Potter JL, Jackson TL, Chen RK, Winkel VL, Zhang Z, McKinney S, Crombrugghe B de (2003) Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Res 31:1541–1553PubMedCrossRefGoogle Scholar
  25. Bronner-Fraser M (1988) Distribution and function of tenascin during cranial neural crest development in the chick. J Neurosci Res 21:135–147CrossRefGoogle Scholar
  26. Bulow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407PubMedCrossRefGoogle Scholar
  27. Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624PubMedCrossRefGoogle Scholar
  28. Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286PubMedCrossRefGoogle Scholar
  29. Chakravarti S, Zhang G, Chervoneva I, Roberts L, Birk DE (2006) Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Dev Dyn 235:2493–2506PubMedCrossRefGoogle Scholar
  30. Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K, Helms JA, Kuo CJ, Kraft DL, Weissman IL (2009) Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457:490–494PubMedCrossRefGoogle Scholar
  31. Chang W, Lin Z, Kulessa H, Hebert J, Hogan BL, Wu DK (2008) Bmp4 is essential for the formation of the vestibular apparatus that detects angular head movements. PLoS Genet 4:e1000050PubMedCrossRefGoogle Scholar
  32. Cheah KSE, Wong SYY, Zhang JCL, Leung AWL, Chan D, Tam PPL (2005) Procollagen IIA regulates BMP/TGFb signaling in patterning the heart and its major vessels. Mech Dev 122 (Supp 1):S25Google Scholar
  33. Chen ZL, Strickland S (2003) Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163:889–899PubMedCrossRefGoogle Scholar
  34. Coles EG, Gammill LS, Miner JH, Bronner-Fraser M (2006) Abnormalities in neural crest cell migration in laminin alpha5 mutant mice. Dev Biol 289:218–228PubMedCrossRefGoogle Scholar
  35. Cortes M, Baria AT, Schwartz NB (2009) Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development 136:1697–1706PubMedCrossRefGoogle Scholar
  36. Costa-Silva B, Costa MC da, Melo FR, Neves CM, Alvarez-Silva M, Calloni GW, Trentin AG (2009) Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential. Exp Cell Res 315:955–967PubMedCrossRefGoogle Scholar
  37. Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28:117–127PubMedCrossRefGoogle Scholar
  38. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122PubMedCrossRefGoogle Scholar
  39. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743PubMedCrossRefGoogle Scholar
  40. De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492PubMedGoogle Scholar
  41. Delannet M, Martin F, Bossy B, Cheresh DA, Reichardt LF, Duband JL (1994) Specific roles of the alpha V beta 1, alpha V beta 3 and alpha V beta 5 integrins in avian neural crest cell adhesion and migration on vitronectin. Development 120:2687–2702PubMedGoogle Scholar
  42. Drago J, Nurcombe V, Bartlett PF (1991) Laminin through its long arm E8 fragment promotes the proliferation and differentiation of murine neuroepithelial cells in vitro. Exp Cell Res 192:256–265PubMedCrossRefGoogle Scholar
  43. Duband JL, Thiery JP (1987) Distribution of laminin and collagens during avian neural crest development. Development 101:461–478PubMedGoogle Scholar
  44. Duband JL, Rocher S, Yamada KM, Thiery JP (1986) Interactions of migrating neural crest cells with fibronectin. Prog Clin Biol Res 226:127–139PubMedGoogle Scholar
  45. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  46. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802PubMedCrossRefGoogle Scholar
  47. Entesarian M, Matsson H, Klar J, Bergendal B, Olson L, Arakaki R, Hayashi Y, Ohuchi H, Falahat B, Bolstad AI, Jonsson R, Wahren-Herlenius M, Dahl N (2005) Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet 37:125–127PubMedCrossRefGoogle Scholar
  48. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRefGoogle Scholar
  49. Flanagan LA, Rebaza LM, Derzic S, Schwartz PH, Monuki ES (2006) Regulation of human neural precursor cells by laminin and integrins. J Neurosci Res 83:845–856Google Scholar
  50. Fontana L, Chen Y, Prijatelj P, Sakai T, Fassler R, Sakai LY, Rifkin DB (2005) Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J 19:1798–1808PubMedCrossRefGoogle Scholar
  51. Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fassler R, Hudson BG, John SW, Ninomiya Y, Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, Umemori H (2007) Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129:179–193PubMedCrossRefGoogle Scholar
  52. Fujiwara H, Hayashi Y, Sanzen N, Kobayashi R, Weber CN, Emoto T, Futaki S, Niwa H, Murray P, Edgar D, Sekiguchi K (2007) Regulation of mesodermal differentiation of mouse embryonic stem cells by basement membranes. J Biol Chem 282:29701–29711PubMedCrossRefGoogle Scholar
  53. Gao J, DeRouen MC, Chen CH, Nguyen M, Nguyen NT, Ido H, Harada K, Sekiguchi K, Morgan BA, Miner JH, Oro AE, Marinkovich MP (2008) Laminin-511 is an epithelial message promoting dermal papilla development and function during early hair morphogenesis. Genes Dev 22:2111–2124PubMedCrossRefGoogle Scholar
  54. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535PubMedCrossRefGoogle Scholar
  55. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091PubMedGoogle Scholar
  56. Goh KL, Yang JT, Hynes RO (1997) Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124:4309–4319PubMedGoogle Scholar
  57. Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810PubMedCrossRefGoogle Scholar
  58. Gordon MK, Hahn RA (2009) Collagens. Cell Tissue Res (this issue)Google Scholar
  59. Gotz W, Osmers R, Herken R (1995) Localisation of extracellular matrix components in the embryonic human notochord and axial mesenchyme. J Anat 186:111–121PubMedGoogle Scholar
  60. Han Y, Lefebvre V (2008) L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol 28:4999–5013PubMedCrossRefGoogle Scholar
  61. Harada M, Murakami H, Okawa A, Okimoto N, Hiraoka S, Nakahara T, Akasaka R, Shiraishi Y, Futatsugi N, Mizutani-Koseki Y, Kuroiwa A, Shirouzu M, Yokoyama S, Taiji M, Iseki S, Ornitz DM, Koseki H (2009) FGF9 monomer-dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nat Genet 41:289–298PubMedCrossRefGoogle Scholar
  62. Hashizume A, Hieda Y (2006) Hedgehog peptide promotes cell polarization and lumen formation in developing mouse submandibular gland. Biochem Biophys Res Commun 339:996–1000PubMedCrossRefGoogle Scholar
  63. Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121PubMedCrossRefGoogle Scholar
  64. Heino J (2007) The collagen family members as cell adhesion proteins. Bioessays 29:1001–1010PubMedCrossRefGoogle Scholar
  65. Henriquez JP, Webb A, Bence M, Bildsoe H, Sahores M, Hughes SM, Salinas PC (2008) Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. Proc Natl Acad Sci USA 105:18812–18817PubMedCrossRefGoogle Scholar
  66. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, Larsen M (2002) Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development 129:5767–5778PubMedCrossRefGoogle Scholar
  67. Holster T, Pakkanen O, Soininen R, Sormunen R, Nokelainen M, Kivirikko KI, Myllyharju J (2007) Loss of assembly of the main basement membrane collagen, type IV, but not fibril-forming collagens and embryonic death in collagen prolyl 4-hydroxylase I null mice. J Biol Chem 282:2512–2519PubMedCrossRefGoogle Scholar
  68. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60PubMedCrossRefGoogle Scholar
  69. Ikeya M, Nosaka T, Fukushima K, Kawada M, Furuta Y, Kitamura T, Sasai Y (2008) Twisted gastrulation mutation suppresses skeletal defect phenotypes in Crossveinless 2 mutant mice. Mech Dev 125:832–842PubMedCrossRefGoogle Scholar
  70. Jaskoll T, Melnick M (1999) Submandibular gland morphogenesis: stage-specific expression of TGF-alpha/EGF, IGF, TGF-beta, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-beta2, TGF-beta3, and EGF-r null mutations. Anat Rec 256:252–268PubMedCrossRefGoogle Scholar
  71. Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, Hajihosseini MK, Lee J, Melnick M (2002) Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(-/-) and Pax6(-/-) mice. Cells Tissues Organs 170:83–98PubMedCrossRefGoogle Scholar
  72. Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J, Bringas P Jr, Carlsson P, Melnick M (2004a) Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn 229:722–732PubMedCrossRefGoogle Scholar
  73. Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM, Melnick M (2004b) FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol 268:457–469PubMedCrossRefGoogle Scholar
  74. Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S, Hajihosseini MK, Melnick M (2005) FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol 5:11PubMedCrossRefGoogle Scholar
  75. Jia J, Maccarana M, Zhang X, Bespalov M, Lindahl U, Li JP (2009) Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem 284:15942–15950PubMedCrossRefGoogle Scholar
  76. Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501PubMedCrossRefGoogle Scholar
  77. Kalyani A, Hobson K, Rao MS (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization, and clonal analysis. Dev Biol 186:202–223PubMedCrossRefGoogle Scholar
  78. Kearns SM, Laywell ED, Kukekov VK, Steindler DA (2003) Extracellular matrix effects on neurosphere cell motility. Exp Neurol 182:240–244PubMedCrossRefGoogle Scholar
  79. Khetarpal U, Robertson NG, Yoo TJ, Morton CC (1994) Expression and localization of COL2A1 mRNA and type II collagen in human fetal cochlea. Hear Res 79:59–73PubMedCrossRefGoogle Scholar
  80. Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370PubMedCrossRefGoogle Scholar
  81. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336PubMedCrossRefGoogle Scholar
  82. Krotoski DM, Bronner-Fraser M (1986) Mapping of neural crest pathways in Xenopus laevis. Prog Clin Biol Res 217B:229–233PubMedGoogle Scholar
  83. Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, Jucker M, Arber S, Caroni P, Sanes JR, Bettler B, Ruegg MA (2007) Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci 27:7183–7195PubMedCrossRefGoogle Scholar
  84. Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156:333–344PubMedCrossRefGoogle Scholar
  85. Lallier T, Leblanc G, Artinger KB, Bronner-Fraser M (1992) Cranial and trunk neural crest cells use different mechanisms for attachment to extracellular matrices. Development 116:531–541PubMedGoogle Scholar
  86. Landolt RM, Vaughan L, Winterhalter KH, Zimmermann DR (1995) Versican is selectively expressed in embryonic tissues that act as barriers to neural crest cell migration and axon outgrowth. Development 121:2303–2312PubMedGoogle Scholar
  87. Larrain J, Bachiller D, Lu B, Agius E, Piccolo S, De Robertis EM (2000) BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127:821–830PubMedGoogle Scholar
  88. Laywell ED, Kukekov VG, Steindler DA (1999) Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp Neurol 156:430–433PubMedCrossRefGoogle Scholar
  89. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97:13883-13888PubMedCrossRefGoogle Scholar
  90. Le Douarin N (2001) The neural crest and evolution of vertebrates (in French). Bull Mem Acad R Med Belg 156:521–531PubMedGoogle Scholar
  91. Lefebvre V, Huang W, Harley VR, Goodfellow PN, Crombrugghe B de (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346PubMedGoogle Scholar
  92. Leone DP, Relvas JB, Campos LS, Hemmi S, Brakebusch C, Fassler R, Ffrench-Constant C, Suter U (2005) Regulation of neural progenitor proliferation and survival by beta1 integrins. J Cell Sci 118:2589-2599PubMedCrossRefGoogle Scholar
  93. Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, Liu H, Heller S (2005) BMP4 signaling is involved in the generation of inner ear sensory epithelia. BMC Dev Biol 5:16PubMedCrossRefGoogle Scholar
  94. Li J, Tzu J, Chen Y, Zhang YP, Nguyen NT, Gao J, Bradley M, Keene DR, Oro AE, Miner JH, Marinkovich MP (2003) Laminin-10 is crucial for hair morphogenesis. EMBO J 22:2400–2410PubMedCrossRefGoogle Scholar
  95. Li SW, Prockop DJ, Helminen H, Fassler R, Lapvetelainen T, Kiraly K, Peltarri A, Arokoski J, Lui H, Arita M (1995) Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 9:2821–2830PubMedCrossRefGoogle Scholar
  96. Li SW, Takanosu M, Arita M, Bao Y, Ren ZX, Maier A, Prockop DJ, Mayne R (2001) Targeted disruption of Col11a2 produces a mild cartilage phenotype in transgenic mice: comparison with the human disorder otospondylomegaepiphyseal dysplasia (OSMED). Dev Dyn 222:141–152PubMedCrossRefGoogle Scholar
  97. Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–430PubMedCrossRefGoogle Scholar
  98. Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD (1999) Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 19:9399–9411PubMedGoogle Scholar
  99. Lincoln J, Florer JB, Deutsch GH, Wenstrup RJ, Yutzey KE (2006) ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Dev Dyn 235:3295–3305PubMedCrossRefGoogle Scholar
  100. Linton JM, Martin GR, Reichardt LF (2007) The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134:2501–2509PubMedCrossRefGoogle Scholar
  101. Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856PubMedCrossRefGoogle Scholar
  102. Lui VC, Ng LJ, Nicholls J, Tam PP, Cheah KS (1995) Tissue-specific and differential expression of alternatively spliced alpha 1(II) collagen mRNAs in early human embryos. Dev Dyn 203:198–211PubMedGoogle Scholar
  103. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81PubMedCrossRefGoogle Scholar
  104. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185PubMedCrossRefGoogle Scholar
  105. Mak AC, Szeto IY, Fritzsch B, Cheah KS (2009) Differential and overlapping expression pattern of SOX2 and SOX9 in inner ear development. Gene Expr Patterns 9:444–453PubMedCrossRefGoogle Scholar
  106. Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR, Parsons M, Mayor R (2008) Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 135:1771–1780PubMedCrossRefGoogle Scholar
  107. Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J (2006) The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 281:36905–36914PubMedCrossRefGoogle Scholar
  108. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750PubMedCrossRefGoogle Scholar
  109. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410PubMedCrossRefGoogle Scholar
  110. Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134:2397–2405PubMedCrossRefGoogle Scholar
  111. Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12:3156–3161PubMedCrossRefGoogle Scholar
  112. Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217:278–289PubMedCrossRefGoogle Scholar
  113. Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 143:1713–1723PubMedCrossRefGoogle Scholar
  114. Miner JH, Li C, Mudd JL, Go G, Sutherland AE (2004) Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131:2247–2256PubMedCrossRefGoogle Scholar
  115. Monne M, Han L, Schwend T, Burendahl S, Jovine L (2008) Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature 456:653–657PubMedCrossRefGoogle Scholar
  116. Murakami H, Okawa A, Yoshida H, Nishikawa S, Moriya H, Koseki H (2002) Elbow knee synostosis (Eks): a new mutation on mouse chromosome 14. Mamm Genome 13:341–344PubMedCrossRefGoogle Scholar
  117. Murase S, Horwitz AF (2002) Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 22:3568–3579PubMedGoogle Scholar
  118. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43PubMedCrossRefGoogle Scholar
  119. Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, Nagata K (2000) Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol 150:1499–1506PubMedCrossRefGoogle Scholar
  120. Nakrieko KA, Welch I, Dupuis H, Bryce D, Pajak A, St AR, Dedhar S, D’Souza SJ, Dagnino L (2008) Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis. Mol Biol Cell 19:1462–1473PubMedCrossRefGoogle Scholar
  121. Newgreen DF (1989) Physical influences on neural crest cell migration in avian embryos: contact guidance and spatial restriction. Dev Biol 131:136–148PubMedCrossRefGoogle Scholar
  122. Newgreen D, Thiery JP (1980) Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res 211:269–291PubMedCrossRefGoogle Scholar
  123. Nguyen NM, Senior RM (2006) Laminin isoforms and lung development: all isoforms are not equal. Dev Biol 294:271–279PubMedCrossRefGoogle Scholar
  124. Nguyen NM, Miner JH, Pierce RA, Senior RM (2002) Laminin alpha 5 is required for lobar septation and visceral pleural basement membrane formation in the developing mouse lung. Dev Biol 246:231–244PubMedCrossRefGoogle Scholar
  125. Nguyen NM, Kelley DG, Schlueter JA, Meyer MJ, Senior RM, Miner JH (2005) Epithelial laminin alpha5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung. Dev Biol 282:111–125PubMedCrossRefGoogle Scholar
  126. Nishimune H, Valdez G, Jarad G, Moulson CL, Muller U, Miner JH, Sanes JR (2008) Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J Cell Biol 182:1201–1215PubMedCrossRefGoogle Scholar
  127. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995a) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374:258–262PubMedCrossRefGoogle Scholar
  128. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995b) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 10:400–406PubMedCrossRefGoogle Scholar
  129. Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7:280–290PubMedCrossRefGoogle Scholar
  130. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22:108–112PubMedCrossRefGoogle Scholar
  131. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186PubMedCrossRefGoogle Scholar
  132. Peacock JD, Lu Y, Koch M, Kadler KE, Lincoln J (2008) Temporal and spatial expression of collagens during murine atrioventricular heart valve development and maintenance. Dev Dyn 237:3051–3058PubMedCrossRefGoogle Scholar
  133. Perris R, Krotoski D, Bronner-Fraser M (1991) Collagens in avian neural crest development: distribution in vivo and migration-promoting ability in vitro. Development 113:969–984Google Scholar
  134. Perris R, Kuo HJ, Glanville RW, Leibold S, Bronner-Fraser M (1993a) Neural crest cell interaction with type VI collagen is mediated by multiple cooperative binding sites within triple-helix and globular domains. Exp Cell Res 209:103–117PubMedCrossRefGoogle Scholar
  135. Perris R, Syfrig J, Paulsson M, Bronner-Fraser M (1993b) Molecular mechanisms of neural crest cell attachment and migration on types I and IV collagen. J Cell Sci 106:1357–1368PubMedGoogle Scholar
  136. Perris R, Perissinotto D, Pettway Z, Bronner-Fraser M, Morgelin M, Kimata K (1996) Inhibitory effects of PG-H/aggrecan and PG-M/versican on avian neural crest cell migration. FASEB J 10:293–301PubMedGoogle Scholar
  137. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–1628PubMedCrossRefGoogle Scholar
  138. Pujades C, Kamaid A, Alsina B, Giraldez F (2006) BMP-signaling regulates the generation of hair-cells. Dev Biol 292:55–67PubMedCrossRefGoogle Scholar
  139. Ramirez F, Sakai LY (2009) Biogenesis and function of fibrillin assemblies. Cell Tissue Res (this issue)Google Scholar
  140. Rautavuoma K, Takaluoma K, Sormunen R, Myllyharju J, Kivirikko KI, Soininen R (2004) Premature aggregation of type IV collagen and early lethality in lysyl hydroxylase 3 null mice. Proc Natl Acad Sci USA 101:14120–14125PubMedCrossRefGoogle Scholar
  141. Rebustini IT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, Hoffman MP (2007) Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol 308:15–29PubMedCrossRefGoogle Scholar
  142. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science 255:1707-1710PubMedCrossRefGoogle Scholar
  143. Ring C, Hassell J, Halfter W (1996) Expression pattern of collagen IX and potential role in the segmentation of the peripheral nervous system. Dev Biol 180:41–53PubMedCrossRefGoogle Scholar
  144. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244PubMedCrossRefGoogle Scholar
  145. Rodgers KD, San Antonio JD, Jacenko O (2008) Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 237:2622–2642PubMedCrossRefGoogle Scholar
  146. Rossi M, Morita H, Sormunen R, Airenne S, Kreivi M, Wang L, Fukai N, Olsen BR, Tryggvason K, Soininen R (2003) Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J 22:236–245PubMedCrossRefGoogle Scholar
  147. Ruotsalainen H, Sipila L, Vapola M, Sormunen R, Salo AM, Uitto L, Mercer DK, Robins SP, Risteli M, Aszodi A, Fassler R, Myllyla R (2006) Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci 119:625–635PubMedCrossRefGoogle Scholar
  148. Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881PubMedCrossRefGoogle Scholar
  149. Schuger L, O’Shea KS, Nelson BB, Varani J (1990a) Organotypic arrangement of mouse embryonic lung cells on a basement membrane extract: involvement of laminin. Development 110:1091–1099PubMedGoogle Scholar
  150. Schuger L, O’Shea S, Rheinheimer J, Varani J (1990b) Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis. Dev Biol 137:26–32PubMedCrossRefGoogle Scholar
  151. Schuger L, Skubitz AP, O’Shea KS, Chang JF, Varani J (1991) Identification of laminin domains involved in branching morphogenesis: effects of anti-laminin monoclonal antibodies on mouse embryonic lung development. Dev Biol 146:531–541PubMedCrossRefGoogle Scholar
  152. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141PubMedCrossRefGoogle Scholar
  153. Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bachinger HP, Sakai LY (2008) Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem 283:13874–13888PubMedCrossRefGoogle Scholar
  154. Sirko S, Holst A von, Wizenmann A, Gotz M, Faissner A (2007) Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134:2727–2738PubMedCrossRefGoogle Scholar
  155. Smirnov SP, Barzaghi P, McKee KK, Ruegg MA, Yurchenco PD (2005) Conjugation of LG domains of agrins and perlecan to polymerizing laminin-2 promotes acetylcholine receptor clustering. J Biol Chem 280:41449–41457PubMedCrossRefGoogle Scholar
  156. Smith SM, West LA, Govindraj P, Zhang X, Ornitz DM, Hassell JR (2007a) Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors. Matrix Biol 26:175–184PubMedCrossRefGoogle Scholar
  157. Smith SM, West LA, Hassell JR (2007b) The core protein of growth plate perlecan binds FGF-18 and alters its mitogenic effect on chondrocytes. Arch Biochem Biophys 468:244–251PubMedCrossRefGoogle Scholar
  158. Smits P, Lefebvre V (2003) Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 130:1135–1148PubMedCrossRefGoogle Scholar
  159. Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, Crombrugghe B de, Lefebvre V (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 1:277–290PubMedCrossRefGoogle Scholar
  160. Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160PubMedCrossRefGoogle Scholar
  161. So CL, Kaluarachchi K, Tam PP, Cheah KS (2001) Impact of mutations of cartilage matrix genes on matrix structure, gene activity and chondrogenesis. Osteoarthr Cartil 9 (Suppl A):S160–S173PubMedGoogle Scholar
  162. Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, Larsen M, Hoffman MP (2005) FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 132:1223–1234PubMedCrossRefGoogle Scholar
  163. Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512PubMedCrossRefGoogle Scholar
  164. Strachan LR, Condic ML (2003) Neural crest motility and integrin regulation are distinct in cranial and trunk populations. Dev Biol 259:288-302PubMedCrossRefGoogle Scholar
  165. Sugahara K, Mikami T (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17:Google Scholar
  166. Sweeney E, Campbell M, Watkins K, Hunter CA, Jacenko O (2008) Altered endochondral ossification in collagen X mouse models leads to impaired immune responses. Dev Dyn 237:2693–2704PubMedCrossRefGoogle Scholar
  167. Tan SS, Crossin KL, Hoffman S, Edelman GM (1987) Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest cell distribution. Proc Natl Acad Sci USA 84:7977–7981PubMedCrossRefGoogle Scholar
  168. Testaz S, Duband JL (2001) Central role of the alpha4beta1 integrin in the coordination of avian truncal neural crest cell adhesion, migration, and survival. Dev Dyn 222:127–140PubMedCrossRefGoogle Scholar
  169. Tholozan FM, Gribbon C, Li Z, Goldberg MW, Prescott AR, McKie N, Quinlan RA (2007) FGF-2 release from the lens capsule by MMP-2 maintains lens epithelial cell viability. Mol Biol Cell 18:4222–4231PubMedCrossRefGoogle Scholar
  170. Tiainen P, Pasanen A, Sormunen R, Myllyharju J (2008) Characterization of recombinant human prolyl 3-hydroxylase isoenzyme 2, an enzyme modifying the basement membrane collagen IV. J Biol Chem 283:19432–19439PubMedCrossRefGoogle Scholar
  171. Tucker RP, McKay SE (1991) The expression of tenascin by neural crest cells and glia. Development 112:1031–1039PubMedGoogle Scholar
  172. Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 81:229–240PubMedCrossRefGoogle Scholar
  173. Wai AW, Ng LJ, Watanabe H, Yamada Y, Tam PP, Cheah KS (1998) Disrupted expression of matrix genes in the growth plate of the mouse cartilage matrix deficiency (cmd) mutant. Dev Genet 22:349–358PubMedCrossRefGoogle Scholar
  174. Wang J, Ruan NJ, Qian L, Lei WL, Chen F, Luo ZG (2008) Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 283:21668–21675PubMedCrossRefGoogle Scholar
  175. Wang X, Harris RE, Bayston LJ, Ashe HL (2008) Type IV collagens regulate BMP signalling in Drosophila. Nature 455:72–77PubMedCrossRefGoogle Scholar
  176. Wassarman PM, Jovine L, Litscher ES (2004) Mouse zona pellucida genes and glycoproteins. Cytogenet Genome Res 105:228–234PubMedCrossRefGoogle Scholar
  177. Watanabe H, Yamada Y (1999) Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat Genet 21:225–229PubMedCrossRefGoogle Scholar
  178. Watanabe H, Kimata K, Line S, Strong D, Gao LY, Kozak CA, Yamada Y (1994) Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nat Genet 7:154–157PubMedCrossRefGoogle Scholar
  179. Wells RG, Discher DE (2008) Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal 1:e13Google Scholar
  180. Wenstrup RJ, Florer JB, Davidson JM, Phillips CL, Pfeiffer BJ, Menezes DW, Chervoneva I, Birk DE (2006) Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 281:12888–12895PubMedCrossRefGoogle Scholar
  181. Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183PubMedCrossRefGoogle Scholar
  182. Yamamoto S, Fukumoto E, Yoshizaki K, Iwamoto T, Yamada A, Tanaka K, Suzuki H, Aizawa S, Arakaki M, Yuasa K, Oka K, Chai Y, Nonaka K, Fukumoto S (2008) Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression. J Biol Chem 283:23139–23149PubMedCrossRefGoogle Scholar
  183. Yao Y, Zebboudj AF, Shao E, Perez M, Bostrom K (2006) Regulation of bone morphogenetic protein-4 by matrix GLA protein in vascular endothelial cells involves activin-like kinase receptor 1. J Biol Chem 281:33921–33930PubMedCrossRefGoogle Scholar
  184. Yao Y, Nowak S, Yochelis A, Garfinkel A, Bostrom KI (2007) Matrix GLA protein, an inhibitory morphogen in pulmonary vascular development. J Biol Chem 282:30131–30142PubMedCrossRefGoogle Scholar
  185. Yao Y, Shahbazian A, Bostrom KI (2008) Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4. Circ Res 102:1065–1074PubMedCrossRefGoogle Scholar
  186. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA 102:5062–5067PubMedCrossRefGoogle Scholar
  187. Yu J, McMahon AP, Valerius MT (2004) Recent genetic studies of mouse kidney development. Curr Opin Genet Dev 14:550–557PubMedCrossRefGoogle Scholar
  188. Yu WM, Feltri ML, Wrabetz L, Strickland S, Chen ZL (2005) Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci 25:4463–4472PubMedCrossRefGoogle Scholar
  189. Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 22:521–538PubMedCrossRefGoogle Scholar
  190. Zakin L, Metzinger CA, Chang EY, Coffinier C, De Robertis EM (2008) Development of the vertebral morphogenetic field in the mouse: interactions between crossveinless-2 and twisted gastrulation. Dev Biol 323:6–18PubMedCrossRefGoogle Scholar
  191. Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP-2. J Cell Biol 144:1069–1080PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kwok Yeung Tsang
    • 1
  • Martin C. H. Cheung
    • 1
  • Danny Chan
    • 1
  • Kathryn S. E. Cheah
    • 1
    Email author
  1. 1.Department of Biochemistry and Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina

Personalised recommendations