Cell and Tissue Research

, 339:259 | Cite as


  • Madeleine Durbeej
At-a-Glance Article


Laminins are cell adhesion molecules that comprise a family of glycoproteins found predominantly in basement membranes, which are the thin sheets of extracellular matrix that underlie epithelial and endothelial cells and surround muscle cells, Schwann cells, and fat cells. Many laminins self-assemble to form networks that remain in close association with cells through interactions with cell surface receptors. Laminins are vital for many physiological functions. They are essential for early embryonic development and organogenesis and have crucial functions in several tissues including muscle, nerve, skin, kidney, lung, and the vasculature. A great wealth of data on laminins is available, and an in-depth description is not attempted here. In this review, I will instead provide a snapshot of laminin structure, tissue distribution, and interactions with other matrix molecules and receptors and briefly describe laminin mutations in mice and humans. Several illuminating and timely reviews are cited that can be consulted for references to original articles and more detailed information concerning laminins.


Basement membrane Integrin Dystroglycan Development Congenital disease 


  1. Abrass CK, Berfield AK, Ryan MC, Carter WG, Hansen KM (2006) Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene. Kidney Int 70:1062–1071CrossRefPubMedGoogle Scholar
  2. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332CrossRefPubMedGoogle Scholar
  3. Chen ZL, Strickland S (2003) Laminin γ1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163:889–899CrossRefPubMedGoogle Scholar
  4. Dainichi T, Kurono S, Ohyama B, Ishii N, Sanzen N, Hayashi M, Shimono C, Taniguchi Y, Koga H, Karashima T, Yasumoto S, Zillikens D, Sekiguchi K, Hashimoto T (2009) Anti-laminin gamma-1 pemphigoid. Proc Natl Acad Sci USA 106:2800–2805CrossRefPubMedGoogle Scholar
  5. Denes V, Witkovsky P, Koch M, Hunter DD, Pinzon-Duarte G, Brunken WJ (2007) Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 24:549–562CrossRefPubMedGoogle Scholar
  6. Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22:35–37CrossRefPubMedGoogle Scholar
  7. Fukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y (2006) Laminin α5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 281:5008–5016CrossRefPubMedGoogle Scholar
  8. Gubler MC (2008) Inherited diseases of the glomerular basement membrane. Nat Clin Pract Nephrol 4:24–37CrossRefPubMedGoogle Scholar
  9. Häger M, Gawlik K, Nyström A, Sasaki T, Durbeej M (2005) Laminin α1 chain corrects male fertility caused by absence of laminin α2 chain. Am J Pathol 167:823–833PubMedGoogle Scholar
  10. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000CrossRefPubMedGoogle Scholar
  11. Ho MSP, Böse K, Mokkapati S, Nischt R, Smyth N (2008) Nidogens—extracellular matrix linker molecules. Microsc Res Tech 71:387–395CrossRefPubMedGoogle Scholar
  12. Ido H, Ito S, Taniguchi Y, Hayashi M, Sato-Nishuchi R, Sanzen N, Hayashi Y, Futaki S, Sekiguchi K (2008) Laminin isoforms containing γ3 chain are unable to bind integrins due to the absence of the glutamatic acid residue conserved in the C-terminal regions of the γ1 and γ2 chains. J Biol Chem 283:28148–28157CrossRefGoogle Scholar
  13. Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F (2005) Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci 62:809–823CrossRefPubMedGoogle Scholar
  14. Knöll R, Postel R, Wang J, Krätzner R, Hennecke G, Vacaru AM, et al (2007) Laminin-α4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116:515–525CrossRefPubMedGoogle Scholar
  15. Kuang W, Xu H, Vachon PH, Liu L, Loechel F, Wewer UM, Engvall E (1998) Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. J Clin Invest 102:844–852CrossRefPubMedGoogle Scholar
  16. Kuster JE, Guarnieri MH, Ault JG, Flaherty L, Swiatek PJ (1997) IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm Genome 8:673–681CrossRefPubMedGoogle Scholar
  17. Li J, Tzu J, Chen Y, Zhang YP, Nguyen NT, Gao J, Bradley M, Keene DR, Oro AE, Miner JH, Marinkovich MP (2003) Laminin-10 is crucial for hair morphogenesis. EMBO J 22:2400–2410CrossRefPubMedGoogle Scholar
  18. Li S, Liquari P, McKee KK, Harrison D, Patel R, Lee S, Yurchenco PD (2005) Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169:179–189CrossRefPubMedGoogle Scholar
  19. Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD (1999) Disruption of laminin β2 chain production causes alterations in the morphology and function of the CNS. J Neurosci 19:9399–9411PubMedGoogle Scholar
  20. McKee KK, Harrison D, Capizzi S, Yurchenco PD (2007) Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem 282:21437–21447CrossRefPubMedGoogle Scholar
  21. Meng X, Klement JF, Leperi DA, Birk DE, Sasaki T, Timpl R, Uitto J, Pulkkinen L (2003) Targeted inactivation of murine laminin γ2-chain gene recapitulates human junctional epidermolysis bullosa. J Invest Dermatol 121:720–731CrossRefPubMedGoogle Scholar
  22. Miner JH (2008) Laminins and their roles in mammals. Microsc Res Tech 71:349–356CrossRefPubMedGoogle Scholar
  23. Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin α5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217:278–289CrossRefPubMedGoogle Scholar
  24. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284CrossRefPubMedGoogle Scholar
  25. Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J Cell Biol 143:1713–1723CrossRefPubMedGoogle Scholar
  26. Miner JH, Li C, Mudd JL, Go G, Sutherland AE (2004) Compositional and structural requirements for laminins and basement membranes during mouse embryo implantation and gastrulation. Development 131:2247–2256CrossRefPubMedGoogle Scholar
  27. Miyagoe Y, Hanaoka K, Nonaka I, Hayasaka M, Nabeshima Y, Arahata K, Nabeshima Y, Takeda S (1997) Laminin α2 chain-null mutant mice by targeted disruption of the Lama2: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett 415:33–39CrossRefPubMedGoogle Scholar
  28. Nguyen NM, Miner JH, Pierce RA, Senior RM (2002) Laminin α5 is required for lobar septation and visceral pieural basement membrane formation in the developing mouse lung. Dev Biol 246:231–244CrossRefPubMedGoogle Scholar
  29. Nguyen NM, Pulkkinen L, Schleuter JA, Meneguzzi G, Uitto J, Senior RM (2006) Lung development in laminin γ2 chain deficiency: abnormal tracheal hemidesmosomes with normal branching morphogenesis and epithelial differentiation. Respir Res 7:28CrossRefPubMedGoogle Scholar
  30. Niimi T, Hayashi Y, Futaki S, Sekiguchi K (2004) SOX7 and SOX17 regulate the parietal endoderm-specific enhancer activity of mouse laminin α1 gene. J Biol Chem 279:38055–38061CrossRefPubMedGoogle Scholar
  31. Nishiuchi R, Takagi J, Hayashi M, Ido H, Yagi Y, Sanzen N, Tsuji T, Yamada M, Sekiguchi K (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant α3β1, α6β1, α7β1 and α6β4 integrins. Matrix Biol 25:189–197CrossRefPubMedGoogle Scholar
  32. Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995a) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature 374:258–262CrossRefPubMedGoogle Scholar
  33. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995b) The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by β1. Nat Genet 10:400–406CrossRefPubMedGoogle Scholar
  34. Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Cancer Biol 12:197–207CrossRefGoogle Scholar
  35. Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edstrom L, Tryggvason K, Sanes JR (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nat Neurosci 4:597–604CrossRefPubMedGoogle Scholar
  36. Patton BL, Wang B, Tarumi YS, Seburn KL, Burgess RW (2008) A single point mutation in the LN domain of LAMA2 causes muscular dystrophy and peripheral amyelination. J Cell Sci 121:1593–1604CrossRefPubMedGoogle Scholar
  37. Pillers DA, Kempton JB, Duncan NM, Pang J, Dwinnel SJ, Trune DR (2002) Hearing loss in the laminin-deficient dy mouse model of congenital muscular dystrophy. Mol Genet Metab 76:217–224CrossRefPubMedGoogle Scholar
  38. Rebustini TT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, Hoffman HP (2007) Laminin α5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through β1 integrin signaling. Dev Biol 308:15–29CrossRefPubMedGoogle Scholar
  39. Ryan MC, Lee K, Miyashita Y, Carter WG (1999) Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 145:1309–1323CrossRefPubMedGoogle Scholar
  40. Sasaki T, Fässler R, Hohenester E (2004) Laminin: the crux of basement membrane assembly. J Cell Biol 164:959–963CrossRefPubMedGoogle Scholar
  41. Scheele S, Falk M, Franzen A, Ellin F, Ferletta M, Lonai P, Andersson B, Timpl R, Forsberg E, Ekblom P (2005) Laminin α1 globular domains 4–5 induce fetal development but are not vital for embryonic basement membrane assembly. Proc Natl Acad Sci USA 102:1502–1506CrossRefPubMedGoogle Scholar
  42. Scheele S, Nyström A, Durbeej M, Talts JF, Ekblom M, Ekblom P (2007) Laminin isoforms in development and disease. J Mol Med 85:825–836CrossRefPubMedGoogle Scholar
  43. Sciandra F, Gawlik KI, Brancaccio A, Durbeej M (2007) Dystroglycan: a possible mediator for reducing congenital muscular dystrophy? Trends Biotech 25:262–268CrossRefGoogle Scholar
  44. Smyth N, Vatansever SH, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160CrossRefPubMedGoogle Scholar
  45. Sunada Y, Bernier SM, Kozak CA, Yamada Y, Campbell KP (1994) Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M gene to dy locus. J Biol Chem 269:13729–13732PubMedGoogle Scholar
  46. Sunada Y, Bernier SM, Utani A, Yamada Y, Campbell KP (1995) Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Hum Mol Genet 4:1055–1061CrossRefPubMedGoogle Scholar
  47. Suzuki N, Yokoyama F, Nomizu M (2005) Functional sites in the laminin α chains. Connect Tissue Res 46:142–152CrossRefPubMedGoogle Scholar
  48. Taniguchi Y, Ido H, Sanzen N, Hayashi M, Sato-Nishiuchi R, Futaki S, Sekiguchi K (2009) The C-terminal region of laminin β chains modulates the integrin binding affinities of laminins. J Biol Chem 284:7820–7831CrossRefPubMedGoogle Scholar
  49. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol Cell Biol 22:1194–1202CrossRefPubMedGoogle Scholar
  50. Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin—a glycoprotein from basement membrane. J Biol Chem 254:9933–9937PubMedGoogle Scholar
  51. Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E (2000) Structure and function of laminin LG modules. Matrix Biol 19:309–317CrossRefPubMedGoogle Scholar
  52. Timpl R, Sasaki T, Kostka G, Chu M-L (2003) Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 4:479–489CrossRefPubMedGoogle Scholar
  53. Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF, Marinkovich MP (2008) Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res 68:2885–2894CrossRefPubMedGoogle Scholar
  54. Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40:199–214CrossRefPubMedGoogle Scholar
  55. Wagner WJ, Chang AC, Owens J, Hong MJ, Brooks A, Coligan JE (2000) Aberrant development of thymocytes in mice lacking laminin-2. Dev Immunol 7:179–193CrossRefGoogle Scholar
  56. Wallquist W, Plantman S, Thams S, Thyboll J, Kortesmaa J, Lännergren J, Domogatskaya A, Ogren SO, Risling M, Hammarberg H, Tryggvason K, Culheim S (2005) Impeded interaction between Schwann cells and axons in the absence of laminin α4. J Neurosci 25:3692–3700CrossRefPubMedGoogle Scholar
  57. Wang J, Hoshijima M, Lam J, Zhou Z, Jokiel A, Dalton ND, Hultenby K, Ruiz-Lozano P Jr, Ross J, Tryggvason K, Chien KR (2006) Cardiomyopathy associated with microcirculation dysfunction in laminin α4 chain-deficient mice. J Biol Chem 281:213–220CrossRefPubMedGoogle Scholar
  58. Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, Timpl R, Mayer U (2002) Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 129:2711–2722PubMedGoogle Scholar
  59. Xu H, Christmas P, Wu XR, Wewer UM, Engvall E (1994a) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci USA 91:5572–5576CrossRefPubMedGoogle Scholar
  60. Xu H, Wu XR, Wewer UM, Engvall E (1994b) Murine muscular dystrophy caused by a mutation in the laminin α2 (Lama2) gene. Nat Genet 8:297–302CrossRefPubMedGoogle Scholar
  61. Yuasa K, Fukumoto S, Kamasaki Y, Yamada A, Fukumoto E, Kanaoka K, Saito K, Harada M, Arikawa-Hirasawa E, Miyagoe-Suzuki Y, Takeda S, Okamoto K, Kato Y, Fujiwara T (2004) Laminin α2 is essential for odontoblast differentiation regulating dentin sialoprotein expression. J Biol Chem 279:10286–10292CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Experimental Medical Science, Division for Cell and Matrix BiologyUniversity of LundLundSweden

Personalised recommendations