Cell and Tissue Research

, Volume 337, Issue 1, pp 79–89

Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines

  • Julia V. Gefter
  • Angel L. Shaufl
  • Mitchell P. Fink
  • Russell L. Delude
Regular Article


The receptor for advanced glycation end-products (RAGE) is thought to be expressed ubiquitously as various protein isoforms. Our objective was to use Northern blotting, immunoblotting, and sensitivity to N-glycanase digestion to survey RAGE isoforms expressed in cell lines and mouse tissues in order to obtain a more comprehensive view of the RAGE expressome. Pulmonary RAGE mRNA (1.4 kb) was smaller than cell-line and tissue RAGE mRNA (6 kb-10 kb). Three anti-RAGE antibodies that recognized three distinct RAGE epitopes were used for protein studies (N-16, H-300, and αES). Lung expressed three predominant protein isoforms with apparent molecular masses of 45.1, 52.6, and 57.4 kDa (N-16/H-300) and four isoforms at 25.0, 46.9, 52.5, and 54.2 kDa (αES). These isoforms were expressed exclusively in lung. Heart, ileum, and kidney expressed a 44.0-kDa isoform (N-16), whereas aorta and pancreas expressed a 53.3-kDa isoform (αES). Each of these isoforms were absent in tissue extracts prepared from RAGE−/− mice. Cell lines expressed a 70.0-kDa isoform, and a subset expressed a 30.0-kDa isoform (αES). Lung RAGE appeared to contain two N-linked glycans. Tissue and cell-line RAGE isoforms were completely insensitive to PNGase F digestion. Thus, numerous RAGE protein isoforms are detectable in tissues and cell lines. Canonical transmembrane and soluble RAGE appear to be expressed solely in lung (N-16/H-300). Non-pulmonary tissues and cell lines, regardless of the source tissue, both express distinct RAGE protein isoforms containing the N-terminal N-16 epitope or the αES RAGE epitope encoded by alternate exon 9, but lacking the H-300 epitope.


Receptor for advanced glycation end products Isoforms Northern blotting Western blotting PNGase F Mouse 


  1. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690PubMedCrossRefGoogle Scholar
  2. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35:D760–D765PubMedCrossRefGoogle Scholar
  3. Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59:1117–1128PubMedCrossRefGoogle Scholar
  4. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515PubMedCrossRefGoogle Scholar
  5. Cheng C, Tsuneyama K, Kominami R, Shinohara H, Sakurai S, Yonekura H, Watanabe T, Takano Y, Yamamoto H, Yamamoto Y (2005) Expression profiling of endogenous secretory receptor for advanced glycation end products in human organs. Mod Pathol 18:1385–1396PubMedCrossRefGoogle Scholar
  6. Dahlin K, Mager EM, Allen L, Tigue Z, Goodglick L, Wadehra M, Dobbs L (2004) Identification of genes differentially expressed in rat alveolar type I cells. Am J Respir Cell Mol Biol 31:309–316PubMedCrossRefGoogle Scholar
  7. Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP (2006) Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res 323:475–488PubMedCrossRefGoogle Scholar
  8. Ding Q, Keller JN (2005a) Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 1746:18–27PubMedCrossRefGoogle Scholar
  9. Ding Q, Keller JN (2005b) Splice variants of the receptor for advanced glycosylation end products (RAGE) in human brain. Neurosci Lett 373:67–72PubMedCrossRefGoogle Scholar
  10. Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, Ramsgaard L, Richards TJ, Loutaev I, Nawroth PP, Kasper M, Bierhaus A, Oury TD (2008) A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol 172:583–591PubMedCrossRefGoogle Scholar
  11. Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Muller M (1998) Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 44:1147–1157Google Scholar
  12. Fink MP, Delude RL (2005) Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin 21:177–196PubMedCrossRefGoogle Scholar
  13. Gefter JV, Fink MP, Delude RL (2008) RAGE isoforms. 31st Annual Conference on Shock and 7th International Conference on Complexity in Acute Illness. Medimond, Cologne, GermanyGoogle Scholar
  14. Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM, Reinhart TA, Oury TD (2004) Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 279:50019–50024PubMedCrossRefGoogle Scholar
  15. Harashima A, Yamamoto Y, Cheng C, Tsuneyama K, Myint KM, Takeuchi A, Yoshimura K, Li H, Watanabe T, Takasawa S, Okamoto H, Yonekura H, Yamamoto H (2006) Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression. Biochem J 396:109–115PubMedCrossRefGoogle Scholar
  16. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901PubMedCrossRefGoogle Scholar
  17. Koslowski R, Barth K, Augstein A, Tschernig T, Bargsten G, Aufderheide M, Kasper M (2004) A new rat type I-like alveolar epithelial cell line R3/1: bleomycin effects on caveolin expression. Histochem Cell Biol 121:509–519PubMedCrossRefGoogle Scholar
  18. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267:14998–15004PubMedGoogle Scholar
  19. Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H (2002) CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications 16:56–59PubMedCrossRefGoogle Scholar
  20. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377PubMedCrossRefGoogle Scholar
  21. Perrone L, Peluso G, Melone MA (2008) RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol 217:60–71PubMedCrossRefGoogle Scholar
  22. Sakurai S, Yamamoto Y, Tamei H, Matsuki H, Obata K, Hui L, Miura J, Osawa M, Uchigata Y, Iwamoto Y, Watanabe T, Yonekura H, Yamamoto H (2006) Development of an ELISA for esRAGE and its application to type 1 diabetic patients. Diabetes Res Clin Pract 73:158–165PubMedCrossRefGoogle Scholar
  23. Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP (2002) HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123:790–802PubMedCrossRefGoogle Scholar
  24. Savedra R Jr, Delude RL, Ingalls RR, Fenton MJ, Golenbock DT (1996) Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. J Immunol 157:2549–2554PubMedGoogle Scholar
  25. Scharte M, Han X, Bertges DJ, Fink MP, Delude RL (2003) Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol 284:G373–G384PubMedGoogle Scholar
  26. Schlueter C, Hauke S, Flohr AM, Rogalla P, Bullerdiek J (2003) Tissue-specific expression patterns of the RAGE receptor and its soluble forms—a result of regulated alternative splicing? Biochim Biophys Acta 1630:1–6PubMedGoogle Scholar
  27. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M, Wang F, Pan YE, Tsang TC, Stern D (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267:14987–14997PubMedGoogle Scholar
  28. Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, Yan SD, Brett J, Cao R, Kuwabara K, Costache G, Simionescu N, Simionescu M, Stren D (1994) Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci USA 91:8807–8811PubMedCrossRefGoogle Scholar
  29. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96:1395–1403PubMedCrossRefGoogle Scholar
  30. Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R (2003) S100B inhibits myogenic differentiation and myotube formation in a RAGE-independent manner. Mol Cell Biol 23:4870–4881PubMedCrossRefGoogle Scholar
  31. Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R (2004) S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 199:274–283PubMedCrossRefGoogle Scholar
  32. Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, Freeze HH (2002) N-glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 80:998–1008PubMedCrossRefGoogle Scholar
  33. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360PubMedCrossRefGoogle Scholar
  34. Thet LA, Law DJ (1984) Changes in cell number and lung morphology during early postpneumonectomy lung growth. J Appl Physiol 56:975–978PubMedGoogle Scholar
  35. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496PubMedCrossRefGoogle Scholar
  36. Tuloup M, Hernandez C, Coro I, Hoogland C, Binz P-A, Appel RD (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, TotowaGoogle Scholar
  37. Valencia JV, Mone M, Koehne C, Rediske J, Hughes TE (2004a) Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products. Diabetologia 47:844–852PubMedCrossRefGoogle Scholar
  38. Valencia JV, Mone M, Zhang J, Weetall M, Buxton FP, Hughes TE (2004b) Divergent pathways of gene expression are activated by the RAGE ligands S100b and AGE-BSA. Diabetes 53:743–751PubMedCrossRefGoogle Scholar
  39. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP-ribosylation develop normally but are susceptible to skin disease. Genes Dev 9:509–520PubMedCrossRefGoogle Scholar
  40. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251PubMedCrossRefGoogle Scholar
  41. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691PubMedCrossRefGoogle Scholar
  42. Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370:1097–1109PubMedCrossRefGoogle Scholar
  43. Zill H, Gunther R, Erbersdobler HF, Folsch UR, Faist V (2001) RAGE expression and AGE-induced MAP kinase activation in Caco-2 cells. Biochem Biophys Res Commun 288:1108–1111PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Julia V. Gefter
    • 1
    • 2
  • Angel L. Shaufl
    • 1
  • Mitchell P. Fink
    • 1
    • 3
  • Russell L. Delude
    • 1
    • 2
    • 4
  1. 1.Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.615 Scaife HallPittsburghUSA

Personalised recommendations