Cell and Tissue Research

, Volume 336, Issue 2, pp 165–178 | Cite as

Hoxa3 and signaling molecules involved in aortic arch patterning and remodeling

Review

Abstract

Anomalies of the aortic arch have long been of anatomicoclinical interest. Recent studies on gene-targeted mice have identified the candidate genes that are involved in the patterning and remodeling of the pharyngeal arch arteries. In this review, we discuss our present knowledge with regard to the signaling molecules that regulate specific aspects of arch artery development. We focus first on Hoxa3, because it plays a critical role in the regulation of the differentiation of the third pharyngeal arch. Hoxa3 is expressed by the neural crest cells that originate from the rhombomeres, viz., (r)5, r6, and r7, and populate the third pharyngeal arch; it is also expressed in the third pharyngeal pouch. In Hoxa3 homozygous null mutant mice, the third arch artery degenerates bilaterally at embryonic day 11.5, resulting in the malformation of the carotid artery system. Complex combinatorial signals among the neural crest cells, pharyngeal mesoderm, ectoderm, and pouch endoderm are required for the proper development of the arch arterial system. Therefore, we highlight the numerous signaling pathways and individual genes expressed by the ectomesenchymal neural crest cells and also by the other epithelial and mesodermal cells of the pharynx. Defects in these genes result in malformations of the arch artery derivatives. This review should deepen our understanding of congenital human syndromes with abnormal patterns of pharyngeal arch arteries.

Keywords

Hoxa3 Pharyngeal arch Pharyngeal pouch Pharyngeal arch arteries Patterning and remodeling Mouse Human 

References

  1. Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN (2002) Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129:4613–4625PubMedGoogle Scholar
  2. Adachi B (1928) Das Arteriensystem der Japaner, vol I. Japanese Imperial University Press, KyotoGoogle Scholar
  3. Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130:3567–3578PubMedCrossRefGoogle Scholar
  4. Bergwerff M, DeRuiter MC, Hall S, Poelmann RE, Gittenberger-de Groot AC (1999) Unique vascular morphology of the fourth aortic arches: possible implications for pathogenesis of type-B aortic arch interruption and anomalous right subclavian artery. Cardiovasc Res 44:185–196PubMedCrossRefGoogle Scholar
  5. Bockman D, Redmond ME, Waldo K, Davis H, Kirby MI (1987) Effect of neural crest ablation on development of the heart and arch arteries in the chick. Am J Anat 180:332–341PubMedCrossRefGoogle Scholar
  6. Brady R, Zaidi SIA, Mayer C, Katz DM (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142PubMedGoogle Scholar
  7. Byrd NA, Meyers EN (2005) Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Dev Biol 284:233–245PubMedCrossRefGoogle Scholar
  8. Capdevila J, Vogan KJ, Tabin CJ, Belmonte JCI (2000) Mechanisms of left-right determination in vertebrates. Cell 101:9–21PubMedCrossRefGoogle Scholar
  9. Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeohox gene Hox–1.5. Nature 350:473–479PubMedCrossRefGoogle Scholar
  10. Chisaka O, Kameda Y (2005) Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice. Cell Tissue Res 320:77–89PubMedCrossRefGoogle Scholar
  11. Choudhary B, Ito Y, Makita T, Sasaki T, Chai Y, Sucov HM (2006) Cardiovascular malformations with normal smooth muscle differentiation in neural crest-specific type II TGFβ receptor (Tgfbr2) mutant mice. Dev Biol 289:420–429PubMedCrossRefGoogle Scholar
  12. Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M, Hammer RE, Yanagisawa M (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824PubMedGoogle Scholar
  13. Clouthier DE, Williams SC, Yanagisawa H, Wieduwilt M, Richardson JA, Yanagisawa M (2000) Signaling pathways crucial for craniofacial development revealed by endothelin-A receptor-deficient mice. Dev Biol 217:10–24PubMedCrossRefGoogle Scholar
  14. D’Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468PubMedCrossRefGoogle Scholar
  15. Derynck R, Zhang Y (2003) Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature 425:577–584PubMedCrossRefGoogle Scholar
  16. Epstein JA, Li J, Lang D, Chen F, Brown CB, Jin F, Lu MM, Thomas M, Liu ECJ, Wessels A, Lo CW (2000) Migration of cardiac neural crest cells in Splotch embryos. Development 127:1869–1878PubMedGoogle Scholar
  17. Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaets P, Epstein JA, Raper JA (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070PubMedGoogle Scholar
  18. Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603PubMedGoogle Scholar
  19. Franz T (1989) Persistent truncus arterious in the splotch mutant mouse. Anat Embryol 180:457–464PubMedCrossRefGoogle Scholar
  20. Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D (2001) Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 235:62–73PubMedCrossRefGoogle Scholar
  21. Gitler AD, Lu MM, Epstein JA (2004) PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 7:107–116PubMedCrossRefGoogle Scholar
  22. Gittenberger-de Groot AC, Azhar M, Molin DGM (2006) Transforming growth factor β-SMAD2 signaling and aortic arch development. Trends Cardiovasc Med 16:1–6PubMedCrossRefGoogle Scholar
  23. Graham A (2003) Development of the pharyngeal arches. Am J Med Gen 119A:251–256CrossRefGoogle Scholar
  24. Grifone R, Kelly RG (2007) Heartening news for head muscle development. Trends Gen 23:365–369CrossRefGoogle Scholar
  25. Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A (2001) Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Gen 27:293–298CrossRefGoogle Scholar
  26. Guris DL, Duester G, Papaioannou VE, Imamoto A (2006) Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell 10:81–92PubMedCrossRefGoogle Scholar
  27. Holderfield MT, Hughes CCW (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Cir Res 102:637–652CrossRefGoogle Scholar
  28. Hollinshead WH (1971) Anatomy for surgeons, vol 2. The thorax, abdomen, and pelvis. Harpers & Row, New YorkGoogle Scholar
  29. Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res Part C Embryo Today 69:2–13CrossRefGoogle Scholar
  30. Iida K, Koseki H, Kakinuma H, Kato N, Mizutani-Koseki Y, Ohuchi H, et al (1997) Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124:4627–4638PubMedGoogle Scholar
  31. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Gen 27:286–291CrossRefGoogle Scholar
  32. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616PubMedGoogle Scholar
  33. Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA (2004) Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development 131:3481–3490PubMedCrossRefGoogle Scholar
  34. Kameda Y (2005) Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283:128–139PubMedCrossRefGoogle Scholar
  35. Kameda Y (2007) Expression of glial progenitor markers p75NTR and S100 protein in the developing mouse parathyroid gland. Cell Tissue Res 327:15–23PubMedCrossRefGoogle Scholar
  36. Kameda Y, Nishimaki T, Takeichi M, Chisaka O (2002) Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247:97–209CrossRefGoogle Scholar
  37. Kameda Y, Watari-Goshima W, Nishimaki T, Chisaka O (2003) Disruption of the Hoxa3 homeobox gene results in anomalies of the carotid artery system and the arterial baroreceptors. Cell Tissue Res 311:343–352PubMedGoogle Scholar
  38. Kameda Y, Arai Y, Nishimaki T, Chisaka O (2004) The role of Hoxa3 gene in parathyroid gland organogenesis of the mouse. J Histochem Cytochem 52:641–651PubMedGoogle Scholar
  39. Kameda Y, Ito M, Nishimaki T, Gotoh N (2008) FRS2α 2F/2F mice lack carotid body and exhibit abnormalities of the superior cervical sympathetic ganglion and carotid sinus nerve. Dev Biol 314:236–247PubMedCrossRefGoogle Scholar
  40. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902PubMedGoogle Scholar
  41. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215PubMedGoogle Scholar
  42. Kumar MS, Owens GK (2003) Combinatorial control of smooth muscle-specific gene expression. Arterioscler Thromb Vasc Biol 23:737–747PubMedCrossRefGoogle Scholar
  43. Kume T, Jiang HY, Topczewska JM, Hogan BLM (2001) The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 15:2470–2482PubMedCrossRefGoogle Scholar
  44. Kurihara Y, Kurihara H, Oda H, Maemura K, Nagai R, Ishikawa T, Yazaki Y (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 96:293–300PubMedCrossRefGoogle Scholar
  45. Langman J (1969) Medical embryology. Igaku Shoin, TokyoGoogle Scholar
  46. Larsen WJ (1997) Human embryology, 2nd edn. Churchill Livingstone, New YorkGoogle Scholar
  47. Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  48. Lepore JJ, Mericko PA, Cheng L, Lu MM, Morrisey ED, Parmacek MS (2006) GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J Clin Invest 116:929–939PubMedCrossRefGoogle Scholar
  49. Li J, Chen F, Epstein JA (2000) Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice. Genesis 26:162–164PubMedCrossRefGoogle Scholar
  50. Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM, Bradley A, Baldini A (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 40:379–383Google Scholar
  51. Liu C, Liu W, Palie J, Lu MF, Brown NA, Martin JF (2002) Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development 129:5081–5091PubMedCrossRefGoogle Scholar
  52. Liu W, Selever J, Wang D, Lu MF, Moses KA, Schwartz RJ, Martin JF (2004) Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci 101:4489–4494PubMedCrossRefGoogle Scholar
  53. Macatte TL, Hammond BP, Arenkiel BR, Francis L, Frank DU, Moon AM (2003) Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development 130:6361–6374CrossRefGoogle Scholar
  54. Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003PubMedGoogle Scholar
  55. Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769PubMedGoogle Scholar
  56. Mendelsohn C, Lohnes D, Décimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development. II. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771PubMedGoogle Scholar
  57. Miyakoshi K, Yamashita K, Ikegami Y, Yamamoto T, Magari S (1984) A right-sided aortic arch with the left subclavian artery as the last branch. Acta Anat Nippon 59:104–109PubMedGoogle Scholar
  58. Molin DGM, DeRuiter MC, Wisse LJ, Azhar M, Doetschman T, Poelmann RE, Gittenberger-de Groot AC (2002) Altered apoptosis pattern during pharyngeal arch artery remodelling is associated with aortic arch malformations in Tgfβ2 knock-out mice. Cardiovasc Res 56:312–322PubMedCrossRefGoogle Scholar
  59. Netter FH (1969) Coarctation of the aorta. In: Yonkmann FF (ed) Heart. The CIBA collection of medical illustrations, vol 5. CIBA, Summit, NJ, p 163Google Scholar
  60. Niederreither K, Vermot J, Le Roux I, Schuhbaur B, Chambon P, Dollè P (2003) The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130:2525–2534PubMedCrossRefGoogle Scholar
  61. Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218PubMedCrossRefGoogle Scholar
  62. Pietri T, Eder O, Blanche M, Thiery JP, Dufour S (2003) The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo. Dev Biol 259:176–187PubMedCrossRefGoogle Scholar
  63. Poelmann RE, Gittenberger-de Groot AC (2005) Apoptosis as an instrument in cardiovascular development. Birth Defects Res Part C Embryo Today 75:305–313CrossRefGoogle Scholar
  64. Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9:2421–2426PubMedCrossRefGoogle Scholar
  65. Stalmans I, Lambrechts D, De Smet F, Jansen S, Wang J, Maity S, Kneer P, et al (2003) VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med 9:173–182PubMedCrossRefGoogle Scholar
  66. Tallquist MD, Soriano P (2003) Cell autonomous requirement for PDGFRα in populations of cranial and cardiac neural crest cells. Development 130:507–518PubMedCrossRefGoogle Scholar
  67. Thomas T, Kurihara H, Yamagishi H, Kuhihara Y, Yazaki Y, Olson EN, Srivastava D (1998) A signaling cascade involving endothelin-1, dHAND and Msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development 125:3005–3014PubMedGoogle Scholar
  68. Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and hox gene plasticity. Nat Rev 1:116–124Google Scholar
  69. Verna A (1979) Ultrastructure of the carotid body in the mammals. Int Rev Cytol 60:271–330PubMedCrossRefGoogle Scholar
  70. Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A (2002a) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 11:915–922PubMedCrossRefGoogle Scholar
  71. Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002b) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611PubMedGoogle Scholar
  72. Waldo KL, Lo CW, Kirby ML (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 208:307–323PubMedCrossRefGoogle Scholar
  73. Wang J, Nagy A, Larsson J, Dudas M, Sucov HM, Kaartinen V (2006) Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects. BMC Dev Biol 6:1–14CrossRefGoogle Scholar
  74. Washington Smoak I, Byrd NA, Abu-Issa R, Goddeeris MM, Anderson R, Morris J, Yamamura K, Klingensmith J, Meyer EN (2005) Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 283:357–372PubMedCrossRefGoogle Scholar
  75. Watari N, Kameda Y, Takeichi M, Chisaka O (2001) Hoxa3 regulates integration of glossopharyngeal nerve precursor cells. Dev Biol 240:15–31PubMedCrossRefGoogle Scholar
  76. Wendling O, Dennefeld C, Chambon P, Mark M (2000) Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127:1553–1562PubMedGoogle Scholar
  77. Winnier GE, Kume T, Deng K, Rogers R, Bundy J, Raines C, Walter MA, Hogan BLM, Conway SJ (1999) Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev Biol 213:418–431PubMedCrossRefGoogle Scholar
  78. Wurdak H, Ittner LM, Lang KS, Leveen P, Suter U, Fischer JA, Karlsson S, Born W, Sommer L (2005) Inactivation of TGFβ signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes Dev 19:530–535PubMedCrossRefGoogle Scholar
  79. Wurdak H, Ittner LM, Sommer L (2006) DiGeorge syndrome and pharyngeal apparatus development. BioEssays 28:1078–1086PubMedCrossRefGoogle Scholar
  80. Xu H, Cerrato F, Baldini A (2005) Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development 132:4387–4395PubMedCrossRefGoogle Scholar
  81. Yamagishi H (2001) The 22q11.2 deletion syndrome. Keio J Med 51:77–88Google Scholar
  82. Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Susuki K, Osuzu F, Kuratani S, Yamamura K (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203PubMedCrossRefGoogle Scholar
  83. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, Wit D de, Emoto N, Hammer RE (1998) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836PubMedGoogle Scholar
  84. Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288PubMedCrossRefGoogle Scholar
  85. Zhu H, Wlodarczk BJ, Scott M, Yu W, Merriweather M, Gelineau-van Waes J, Schwartz RJ, Finnell RH (2007) Cardiovascular abnormalities in Folr1 knockout mice and folate rescue. Birth Defects Res Part A Clin Mol Teratol 79:257–268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of AnatomyKitasato University School of MedicineSagamiharaJapan

Personalised recommendations