Cell and Tissue Research

, Volume 335, Issue 3, pp 617–629 | Cite as

Venom apparatus of the Brazilian tarantula Vitalius dubius Mello-Leitão 1923 (Theraphosidae)

  • Thomaz A. A. Rocha-e-Silva
  • Carla B. Collares-Buzato
  • Maria Alice da Cruz-Höfling
  • Stephen Hyslop
Regular Article

Abstract

Tarantula venoms are a cocktail of proteins and peptides that have been increasingly studied in recent years. In contrast, less attention has been given to analyzing the structure of the paired cephalic glands that produce the venom. We have used light, electron, and confocal microscopy to study the organization and structure of the venom gland of the Brazilian tarantula Vitalius dubius. The chelicerae are hairy chitinous structures, each with a single curved hollow fang that opens via an orifice on the anterior surface. Internally, each chelicera contains striated muscle fiber bundles that control fang extension and retraction, and a cylindrical conical venom gland surrounded by a thick well-developed layer of obliquely arranged muscle fibers. Light microscopy of longitudinal and transverse sections showed that the gland secretory epithelium consists of a sponge-like network of slender epithelial cell processes with numerous bridges and interconnections that form lacunae containing secretion. This secretory epithelium is supported by a basement membrane containing elastic fibers. The entire epithelial structure of the venom-secreting cells is reinforced by a dense network of F-actin intermediate filaments, as shown by staining with phalloidin. Neural elements (axons and acetylcholinesterase activity) are also associated with the venom gland. Transmission electron microscopy of the epithelium revealed an ultrastructure typical of secretory cells, including abundant rough and smooth endoplasmic reticulum, an extensive Golgi apparatus, and numerous mitochondria.

Keywords

Cytoskeleton Fang F-actin Histology Secretory epithelium Ultrastructure Venom gland Spider, Vitalius dubius (Arachnida, Mygalomorpha) 

References

  1. Andrade RMG, Oliveira KC, Giusti AL, Silva D, Tambourgi DV (1999) Ontogenetic development of Loxosceles intermedia spider venom. Toxicon 37:627–632CrossRefGoogle Scholar
  2. Atkinson RK (1981) Comparisons of the neurotoxic activity of the venom of several species of funnel web spiders (Atrax). Aust J Exp Biol Med 59:307–316CrossRefGoogle Scholar
  3. Atkinson RK, Walker P (1985) The effects of season of collection, feeding, maturation and gender on the potency of funnel-web spider (Atrax infensus) venom. Aust J Exp Biol Med Sci 63:555–561PubMedCrossRefGoogle Scholar
  4. Barth R (1962) Estudos histológicos sobre as glândulas peçonhentas da “viúva negra”, Latrodectus mactans (Fabricius) (Arachnida, Araneae, Theridiidae). Mem Inst Oswaldo Cruz 60:275–292PubMedGoogle Scholar
  5. Bdolah A (1979) The venom glands of snakes and venom secretion. In: Lee CY (ed) Snake venoms. Handbook of experimental pharmacology, vol 52. Springer, Berlin, pp 41–57Google Scholar
  6. Bertani R (2001) Revision, cladistic analysis, and zoogeography of Vitalius, Nhandu and Proshapalopus, with notes on other Theraphosinae genera (Araneae, Theraphosidae). Arq Zool 36:265–356Google Scholar
  7. Bettini S (1978) Arthropod venoms. Handbook of experimental pharmacology, vol 48. Springer, BerlinGoogle Scholar
  8. Binford GJ (2001) An analysis of geographic and intersexual chemical variation in venom of the spider Tegenaria agrestis (Agelenidae). Toxicon 39:955–968PubMedCrossRefGoogle Scholar
  9. Boer-Lima PA, Gontijo JAR, Cruz-Höfling MA (2002) Bothrops moojeni snake venom-induced renal glomeruli changes in rat. Am J Trop Med Hyg 67:217–222PubMedGoogle Scholar
  10. Brazil V, Vellard J (1925) Contribuição ao estudo do veneno das aranhas. Mem Inst Butantan 2:1–77Google Scholar
  11. Bücherl W (1971) Spiders. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms, vol III. Academic Press, New York, pp 197–277Google Scholar
  12. Cavalieri M, Corvaja N, Grasso A (1990) Immunocytological localization by monoclonal antibodies of α-latrotoxin in the venom gland of the spider Latrodectus tredecimguttatus. Toxicon 28:341–346PubMedCrossRefGoogle Scholar
  13. Cavusoglu K, Maras M, Bayram A (2004) A morphological study of the venom apparatus of the spider Allopecosa fabilis (Araneae, Lycosidae). Turk J Biol 28:79–83Google Scholar
  14. Cavusoglu K, Bayram A, Maras M, Kirindi T, Cavusoglu K (2005) A morphological study on the venom apparatus of spider Larinioides cornutus (Aranae, Araneidae). Turk J Zool 29:351–356Google Scholar
  15. Célérier ML, Paris C, Lange C (1993) Venom of an aggressive African Theraphosidae (Scodra griseipes): milking the venom, a study of its toxicity and its characterization. Toxicon 31:577–590PubMedCrossRefGoogle Scholar
  16. Collares-Buzato CB, Jepson MA, McEwan GTA, Simmons NL, Hirst BH (1998) Co-culture of two MDCK strains with distinct junctional protein expression: a model for intercellular junction rearrangement and cell sorting. Cell Tissue Res 291:267–276PubMedCrossRefGoogle Scholar
  17. Escoubas P (2006) Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Mol Divers 10:545–554PubMedCrossRefGoogle Scholar
  18. Escoubas P, Rash L (2004) Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon 43:555–574PubMedCrossRefGoogle Scholar
  19. Escoubas P, Célérier ML, Nakajima T (1997) High-performance liquid chromatography matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide fingerprinting of tarantula venoms in the genus Brachypelma: chemotaxonomic and biochemical applications. Rapid Commun Mass Spectrom 11:1891–1899PubMedCrossRefGoogle Scholar
  20. Escoubas P, Whiteley BJ, Kristensen CP, Célérier ML, Corzo G, Nakajima T (1998) Multidimensional peptide fingerprinting by high performance liquid chromatography, capillary zone electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of tarantula venom samples. Rapid Commun Mass Spectrom 12:1075–1084CrossRefGoogle Scholar
  21. Escoubas P, Chamot-Rooke J, Stöcklin R, Whiteley BJ, Corzo G, Genet R, Nakajima T (1999) A comparison of matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography electrospray ionization mass spectrometry methods for the analysis of crude tarantula venoms in the Pterinochilus group. Rapid Commun Mass Spectrom 13:1861–1868PubMedCrossRefGoogle Scholar
  22. Escoubas P, Corzo G, Whiteley BJ, Célérier ML, Nakajima T (2002) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-performance liquid chromatography study of quantitative and qualitative variation in tarantula spider venoms. Rapid Commun Mass Spectrom 16:403–413PubMedCrossRefGoogle Scholar
  23. Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  24. Foelix RF, Chu-Wang IW (1973) The morphology of spider sensilla. I. Mechanoreceptors. Tissue Cell 5:451–460PubMedCrossRefGoogle Scholar
  25. Foil LD, Coons LB, Norment BR (1979) Ultrastructure of the venom gland of the brown recluse spider, Loxosceles reclusa Gertsch and Mulaik (Aranea: Loxoscelidae). Int J Insect Morphol Embryol 8:325–334CrossRefGoogle Scholar
  26. Guette C, Legros C, Tournois G, Goyffon M, Célérier ML (2006) Peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of the Lasiodora parahybana tarantula venom gland. Toxicon 47:640–649PubMedCrossRefGoogle Scholar
  27. Herzig W, Ward RJ, Santos WF dos (2002) Intersexual variations in the venom of the Brazilian “armed” spider Phoneutria nigriventer (Keyserling, 1891). Toxicon 40:1399–1406PubMedCrossRefGoogle Scholar
  28. Herzig W, Ward RJ, Santos WF dos (2004) Ontogenetic changes in Phoneutria nigriventer (Aranae, Ctenidae) spider venom. Toxicon 44:635–640PubMedCrossRefGoogle Scholar
  29. Järlfors U, Smith DS, Russell FE (1969) Nerve endings in the venom gland of the spider Latrodectus mactans. Toxicon 7:263–265PubMedCrossRefGoogle Scholar
  30. Keegan HL, Heceen RA, Whittmore FW Jr (1960) Seasonal variation in venom of black widow spiders. Am J Trop Med Hyg 9:477–479PubMedGoogle Scholar
  31. Kiernan JA (1999) Histological and histochemical methods. Elsevier, New YorkGoogle Scholar
  32. Kochva E (1978) Oral glands of the Reptilia. In: Gans C, Gans KA (eds) Biology of the Reptilia, vol 8. Physiology B. Academic Press, New York, pp 43–94Google Scholar
  33. Kochva E (1987) The origin of snakes and evolution of the venom apparatus. Toxicon 25:65–106PubMedCrossRefGoogle Scholar
  34. Kuhn-Nentwig L, Schaller J, Nentwig W (2004) Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon 43:543–553PubMedCrossRefGoogle Scholar
  35. Legros C, Célérier ML, Henry M, Guette C (2004) Nanospray analysis of the venom of the tarantula Theraphosa leblondi: a powerful method for direct venom mass fingerprinting and toxin sequencing. Rapid Commun Mass Spectrom 18:1024–1032PubMedCrossRefGoogle Scholar
  36. Lucas S, Silva PI da Jr, Bertani R (1993) Vitalius, a new genus of the subfamily Theraphosinae Thorell, 1870 from Brazil (Aranae, Theraphosidae). Spixiana Zeitsch Zool 16:241–245Google Scholar
  37. Lucas S, Silva E da Jr, Bertani R, Cardoso JL (1994) Mygalomorph spider bites: a report on 91 cases in the state of São Paulo, Brazil. Toxicon 32:1211–1215PubMedCrossRefGoogle Scholar
  38. Malli H, Vapenik Z, Nentwig W (1993) Ontogenetic changes in the toxicity of the venom of the spider Cupiennius salei (Aranae, Ctenidae). Zool Jb Physiol 97:113–122Google Scholar
  39. Malli H, Kuhn-Nentwig L, Imboden H, Moon MJ, Wyler T (2000) Immunocytochemical localization and secretion process of the toxin CSTX-1 in the venom gland of the wandering spider Cupiennius salei (Araneae: Ctenidae). Cell Tissue Res 299:417–426PubMedCrossRefGoogle Scholar
  40. Moon MJ (1996) Fine structural analysis of the neuromuscular junction in the venomous organ of the spider, Agelena limbata (Araneae: Ageleneidae). Korean J Zool 39:223–230Google Scholar
  41. Oliveira KC, Gonçalves de Andrade RM, Giusti AL, Dias da Silva W, Tambourgi DV (1999) Sex-linked variation of Loxosceles intermedia spider venoms. Toxicon 37:217–221CrossRefGoogle Scholar
  42. Pearse AGE (1980) Histochemistry theoretical and applied. Churchill Livingstone, EdinburghGoogle Scholar
  43. Peakall DR (1966) Regulation of protein production in the silk glands of spiders. Comp Biochem Physiol 19:253–258PubMedCrossRefGoogle Scholar
  44. Perret BA (1977) Venom regeneration in tarantula spiders. I. Analysis of venom produced at different time intervals. Comp Biochem Physiol 56A:607–613CrossRefGoogle Scholar
  45. Platnik NI (2007) The World Spider Catalog, Version 8.0. American Museum of Natural History. http://research.amnh.org/entomology/spiders/catalog/INTRO1.html
  46. Rocha-e-Silva TAA, Sutti R, Hyslop S (2008) Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon (in press)Google Scholar
  47. Russell FE, Järlfors U, Smith DS (1973) Preliminary report on the fine structure of the venom gland of the tarantula. Toxicon 11:439–440PubMedCrossRefGoogle Scholar
  48. Santos VLP dos, Franco CRC, Viggiano RLL, Silveira RB, Cantão MP, Manglini OC, Veiga SS, Gremski W (2000) Structural and ultrastructural description of the venom gland of Loxosceles intermedia (brown spider). Toxicon 38:265–285CrossRefGoogle Scholar
  49. Silva LM, Botelho ACC, Nacif-Pimenta R, Martins GF, Alves LC, Brayner FA, Fortes-Dias CL, Pimenta PFP (2008) Structural analysis of the venom glands of the armed spider Phoneutria nigriventer (Keyserling, 1891): microanatomy, fine structure and confocal observations. Toxicon 51:693–706PubMedCrossRefGoogle Scholar
  50. Smith DS, Russell FE (1967) Structure of the venom gland of the black widow spider Latrodectus mactans. A preliminary light and electron microscopic study. In: Russell FE, Saunders PR (eds) Animal Toxins. Pergamon, Oxford, pp 1–15Google Scholar
  51. Vapenik Z, Nentwig W (2000) The influence of hunger and breeding temperature on the venom production of the spider Cupiennius salei (Aranae, Ctenidae). Toxicon 38:293–298PubMedCrossRefGoogle Scholar
  52. Vieira ALG, Moura MB, Babá EH, Chávez-Olórtegui C, Kalapothakis E, Castro IM (2004) Molecular cloning of toxins expressed by the venom gland of Lasiodora sp. Toxicon 44:949–952PubMedCrossRefGoogle Scholar
  53. Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimization hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:749–752PubMedCrossRefGoogle Scholar
  54. Yigit N, Guven T (2006) Functional structure of Agelena labyrinthica´s (Araneae:Agelenidae) venom gland and electrophoresis of venom. Toxicon 47:48–67CrossRefGoogle Scholar
  55. Yigit N, Guven T, Bayram A, Cavusoglu K (2004) A morphological study on the venom apparatus of the spider Agelena labyrinthica (Araneae, Agelenidae). Turk J Zool 28:149–153Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomaz A. A. Rocha-e-Silva
    • 1
    • 3
  • Carla B. Collares-Buzato
    • 2
  • Maria Alice da Cruz-Höfling
    • 2
  • Stephen Hyslop
    • 1
  1. 1.Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Departamento de Histologia e Embriologia, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São PauloSão PauloBrazil

Personalised recommendations