Cell and Tissue Research

, 335:143 | Cite as

Endothelial microparticles in diseases

  • Gilles N. Chironi
  • Chantal M. Boulanger
  • Alain Simon
  • Françoise Dignat-George
  • Jean-Marie Freyssinet
  • Alain Tedgui
Special Issue Review


Microparticles are submicron vesicles shed from plasma membranes in response to cell activation, injury, and/or apoptosis. The measurement of the phospholipid content (mainly phosphatidylserine; PSer) of microparticles and the detection of proteins specific for the cells from which they are derived has allowed their quantification and characterization. Microparticles of various cellular origin (platelets, leukocytes, endothelial cells) are found in the plasma of healthy subjects, and their amount increases under pathological conditions. Endothelial microparticles (EMP) not only constitute an emerging marker of endothelial dysfunction, but are also considered to play a major biological role in inflammation, vascular injury, angiogenesis, and thrombosis. Although the mechanisms leading to their in vivo formation remain obscure, the release of EMP from cultured cells can be caused in vitro by a number of cytokines and apoptotic stimuli. Recent studies indicate that EMP are able to decrease nitric-oxide-dependent vasodilation, increase arterial stiffness, promote inflammation, and initiate thrombosis at their PSer-rich membrane, which highly co-expresses tissue factor. EMP are known to be elevated in acute coronary syndromes, in severe hypertension with end organ damage, and in thrombotic thrombocytopenic purpura, all conditions associated with endothelial injury and pro-thrombotic state. The release of EMP has also been associated with endothelial dysfunction of patients with multiple sclerosis and lupus anticoagulant. More recent studies have focused on the role of low shear stress leading to endothelial cell apoptosis and subsequent EMP release in end-stage renal disease. Improved knowledge of EMP composition, their biological effects, and the mechanisms leading to their clearance will probably open new therapeutic approaches in the treatment of atherothrombosis.


Microparticles Endothelium Inflammation 


  1. Abid-Hussein MN, Meesters EW, Osmanovic N, Romijn FP, Nieewland R, Sturk A (2003) Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. J Thromb Haemost 1:2434–2443PubMedCrossRefGoogle Scholar
  2. Amabile N, Guérin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16:3381–3388PubMedCrossRefGoogle Scholar
  3. Amabile N, Heiss C, Real WM, Minasi P, McGlothlin D, Rame EJ, Grossman W, DeMarco T, Yeghiazarians Y (2008) Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 177:1268–1275PubMedCrossRefGoogle Scholar
  4. Arteaga RB, Chirinos JA, Soriano AO, Jy W, Horstman L, Jimenez JJ, Mendez A, Ferreira A, deMarchena E, Ahn YS (2006) Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. Am J Cardiol 98:70–74PubMedCrossRefGoogle Scholar
  5. Bakouloula B, Morel O, Faure A, Zobairi F, Jesel L, Trinh A, Zupan M, Canuet M, Grunebaum L, Brunette A, Desprez D, Chabot F, Weitzenblum E, Freyssinet JM, Chaouat A, Toti F (2008) Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 177:536–543CrossRefGoogle Scholar
  6. Berckmans RJ, Nieuwlands R, Boing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85:639–646PubMedGoogle Scholar
  7. Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, deMarchena E, Ahn YS (2003) High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 145:962–970PubMedCrossRefGoogle Scholar
  8. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89:2429–2442PubMedGoogle Scholar
  9. Boulanger C, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, Mallat Z (2001) Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 104:2649–2652PubMedCrossRefGoogle Scholar
  10. Boulanger C, Amabile N, Tedgui A (2006) Circulating microparticles. A potential prognostic marker for atherosclerotic vascular disease. Hypertension 48:180–186PubMedCrossRefGoogle Scholar
  11. Boulanger C, Amabile N, Guérin AP, Pannier B, Leroyer AS, Nguyen C, Mallat Z, Tedgui A, London G (2007) In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease. Hypertension 49:1–7CrossRefGoogle Scholar
  12. Brogan PA, Shah V, Brachet C, Harnden A, Mant D, Klein N, Dillon MJ (2004) Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum 50:927–936PubMedCrossRefGoogle Scholar
  13. Chamouard P, Desprez D, Hugel B, Kunzelmann C, Gidon-Jeangirard C, Lessard M, Baumann R, Freyssinet JM, Grunebaum L (2005) Circulating cell-derived microparticles in Crohn’s disease. Dig Dis Sci 50:574–580PubMedCrossRefGoogle Scholar
  14. Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197Google Scholar
  15. Chironi G, Simon A, Hugel B, Del-Pino M, Gariepy J, Freyssinet JM, Tedgui A (2006) Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 26:2775–2780PubMedCrossRefGoogle Scholar
  16. Chironi G, Craiem D, Miranda-Lacet J, Levenson J, Simon A (2008) Impact of shear stimulus, risk factors burden and early atherosclerosis on the time-course of brachial artery flow-mediated vasodilation. J Hypertens 26:508–515PubMedCrossRefGoogle Scholar
  17. Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, Dignat-George F (1999) In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 104:93–102PubMedCrossRefGoogle Scholar
  18. Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JWA, Radder JK (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106:2442–2447PubMedCrossRefGoogle Scholar
  19. Diamant M, Tushuizen ME, Sturk A, Nieuwland R (2004) Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest 34:392–401PubMedCrossRefGoogle Scholar
  20. Dignat-George F, Camoin-Jau L, Sabatier F, Arnoux D, Anfosso F, Bardin N, Veit V, Combes V, Gentile S, Moal V, Sanmarco M, Sampol J (2004) Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Haemost 91:667–673PubMedGoogle Scholar
  21. Esposito K, Ciotola M, Schisano B, Gualdiero R, Sardelli L, Misso L, Giannetti G, Giugliano D (2006) Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab 91:3676–3679PubMedCrossRefGoogle Scholar
  22. Esposito K, Ciotola M, Giugliano F, Schisano B, Improta L, Improta MR, Beneduce F, Rispoli M, De-Sio M, Giugliano D (2007) Endothelial microparticles correlate with erectile dysfunction in diabetic men. Int J Impot Res 19:161–166PubMedCrossRefGoogle Scholar
  23. Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4:566–573PubMedCrossRefGoogle Scholar
  24. Heiss C, Amabile N, Lee AC, Real WM, Schick SF, Lao D, Wong ML, Jahn S, Angeli FS, Minasi P, Springer ML, Hammond SK, Glantz SA, Grossman W, Balmes JR, Yeghiazarians Y (2008) Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol 51:1760–1771PubMedCrossRefGoogle Scholar
  25. Hugel B, Martinez C, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27PubMedCrossRefGoogle Scholar
  26. Jimenez JJ, Jy W, Mauro LM, Horstman LL, Ahn ZS (2001) Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol 112:81–90PubMedCrossRefGoogle Scholar
  27. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS (2003) Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 109:175–180PubMedCrossRefGoogle Scholar
  28. Jy W, Jimenez JJ, Mauro LM, Horstman LL, Cheng P, Ahn ER, Bidot CJ, Ahn YS (2005) Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. Thromb Haemost 3:1301–1308CrossRefGoogle Scholar
  29. Kahn I, Zucker-Franklin D, Karpatkin S (1975) Microthrombocytis and platelet fragmentation associated with idiopathic/autoimmune thrombocytopenic purpura. Br J Haematol 31:449–460CrossRefGoogle Scholar
  30. Koga H, Sugiyama S, Kugiyama K, Watanabe K, Fukushima H, Tanaka T, Sakamoto T, Yoshimura M, Jinnouchi H, Ogawa H (2005) Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 45:1622–1630PubMedCrossRefGoogle Scholar
  31. Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, Ahn YS (1993) Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multi-infarct dementias. Thromb Res 72:295–304PubMedCrossRefGoogle Scholar
  32. Leroyer AS, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z, Binder BR, Tedgui A, Boulanger CM (2007) Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772–777PubMedCrossRefGoogle Scholar
  33. Leroyer AS, Tedgui A, Boulanger CM (2008) Role of microparticles in atherothrombosis. J Int Med 263:528–537CrossRefGoogle Scholar
  34. Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet J, Tedgui A (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques. A role for apoptosis in plaque thrombogenicity. Circulation 99:348–353PubMedGoogle Scholar
  35. Mallat Z, Benamer H, Hugel B, Benessiano J, Steg P, Freyssinet J, Tedgui A (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101:841–843PubMedGoogle Scholar
  36. Miguet L, Pacaud K, Felden C, Hugel B, Martinez MC, Freyssinet JM, Herbrecht R, Potier N, van Dorsselaer A, Mauvieux L (2006) Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization. Proteomics 6:153–171PubMedCrossRefGoogle Scholar
  37. Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM, Mao WW, Horstman LL, Ahn YS (2001) Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 56:1319–1324PubMedGoogle Scholar
  38. O’Brien J (1955) The platelet-like activity of serum. Br J Haematol 1:223–228PubMedCrossRefGoogle Scholar
  39. Perez-Casal M, Downe C, Fukudome K, Marx G, Toh CH (2005) Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood 105:1515–1522PubMedCrossRefGoogle Scholar
  40. Piccin A, Murphy W, Smith O (2006) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171PubMedCrossRefGoogle Scholar
  41. Preston R, Jy W, Jimenez J, Mauro L, Horstman L, Valle M, Aime G, Ahn Y (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41:211–217PubMedCrossRefGoogle Scholar
  42. Rössig L, Haendeler J, Mallat Z, Hugel B, Freyssinet JM, Tedgui A, Dimmeler S, Zeiher AM (2000) Congestive heart failure induces endothelial cell apoptosis: protective role of carvedilol. J Am Coll Cardiol 36:2081–2089PubMedCrossRefGoogle Scholar
  43. Rössig L, Hoffmann J, Hugel B, Mallat Z, Haase A, Freyssinet JM, Tedgui A, Aicher A, Zeiher AM, Dimmeler S (2001) Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation 104:218–2187CrossRefGoogle Scholar
  44. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, Arnoux D, Charpiot P, Freyssinet JM, Olivier C, Sampol J, Dignat-George F (2002) Type 1 and type 2 diabetic patients display different patterns of cellular MP. Diabetes 5:2840–2845CrossRefGoogle Scholar
  45. Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, Nguyen C, Dignat-George F, Anfosso F (2006) Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 108:1868–1876Google Scholar
  46. Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683PubMedCrossRefGoogle Scholar
  47. Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG (2004) Elevatd circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol 125:804–813PubMedCrossRefGoogle Scholar
  48. Simon A, Chironi G, Levenson J (2006) Performance of subclinical arterial disease detection as a screening test for coronary heart disease. Hypertension 48:392–396PubMedCrossRefGoogle Scholar
  49. Simon A, Chironi G, Levenson J (2007) Comparative performance of subclinical atherosclerosis tests in predicting coronary heart disease in asymptomatic individuals. Eur Heart J 28:2967–2971PubMedCrossRefGoogle Scholar
  50. Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, Jimenez JJ, Horstman LL, Kett DH, Schein RM, Ahn YS (2005) Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med 33:2540–2546PubMedCrossRefGoogle Scholar
  51. VanWijk M, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287PubMedCrossRefGoogle Scholar
  52. Wang JM, Huang YJ, Wang Y, Xu MG, Wang LC, Wang SM, Tao J (2007a) Increased circulating CD31+/CD42- microparticles are associated with impaired systemic artery elasticity in healthy subjects. Am J Hypertens 20:965–966CrossRefGoogle Scholar
  53. Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC (2007b) Reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation. J Vasc Res 44:241–248PubMedCrossRefGoogle Scholar
  54. Warren B, Vales O (1972) The release of vesicles from platelets following adhesion to vessel walls in vitro. Br J Exp Pathol 53:206–215PubMedGoogle Scholar
  55. Williams JB, Jauch EC, Lindsell CJ, Campos B (2007) Endothelial microparticle levels are similar in acute ischemic stroke and stroke mimics due to activation and not apoptosis/necrosis. Acad Emerg Med 14:685–690PubMedGoogle Scholar
  56. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gilles N. Chironi
    • 1
    • 5
  • Chantal M. Boulanger
    • 2
  • Alain Simon
    • 1
  • Françoise Dignat-George
    • 3
  • Jean-Marie Freyssinet
    • 4
  • Alain Tedgui
    • 2
  1. 1.AP-HP, Hôpital Européen Georges PompidouCentre de Médecine Préventive Cardiovasculaire and Université René DescartesParisFrance
  2. 2.Unité INSERM U689 and Institut Fédératif de Recherche CirculationParisFrance
  3. 3.Laboratoire d’Hématologie et d’ImmunologieUnité INSERM U608 and UFR de PharmacieMarseilleFrance
  4. 4.Unité INSERM U770, Hôpital Bicêtre, Le Kremlin Bicêtre and Institut d’Hématologie et d’Immunologie, Faculté de MédecineUniversité Louis PasteurStrasbourgFrance
  5. 5.Centre de Médecine Préventive Cardiovasculaire, Groupe Hospitalier Broussais – HEGPHôpital BroussaisParis Cedex 14France

Personalised recommendations