Advertisement

Cell and Tissue Research

, Volume 333, Issue 1, pp 115–124 | Cite as

Immunohistochemical evidence for multiple photosystems in box jellyfish

  • Peter Ekström
  • Anders Garm
  • Jonas Pålsson
  • Thomas S. Vihtelic
  • Dan-Eric Nilsson
Regular Article

Abstract

Cubomedusae (box jellyfish) possess a remarkable visual system with 24 eyes distributed in four sensory structures termed rhopalia. Each rhopalium is equipped with six eyes: two pairs of pigment cup eyes and two unpaired lens eyes. Each eye type probably captures specific features of the visual environment. To investigate whether multiple types of photoreceptor cells are present in the rhopalium, and whether the different eye types possess different types of photoreceptors, we have used immunohistochemistry with a range of vertebrate opsin antibodies to label the photoreceptors, and electroretinograms (ERG) to determine their spectral sensitivity. All photoreceptor cells of the two lens eyes of the box jellyfish Tripedalia cystophora and Carybdea marsupialis displayed immunoreactivity for an antibody directed against the zebrafish ultraviolet (UV) opsin, but not against any of eight other rhodopsin or cone opsin antibodies tested. In neither of the two species were the pigment cup eyes immunoreactive for any of the opsin antibodies. ERG analysis of the Carybdea lower lens eyes demonstrated a single spectral sensitivity maximum at 485 nm suggesting the presence of a single opsin type. Our data demonstrate that the lens eyes of box jellyfish utilize a single opsin and are thus color-blind, and that there is probably a different photopigment in the pigment cup eyes. The results support our hypothesis that the lens eyes and the pigment cup eyes of box jellyfish are involved in different and specific visual tasks.

Keywords

Vision Eyes Opsin Tripedalia cystophora Carybdea marsupialis (Cnidaria, Cubozoa) 

Notes

Acknowledgements

The authors wish to thank Eva Landgren, Carina Rasmussen, and Rita Wallén for expert technical assistance. This study was supported by the Swedish Research Council (D.-E. Nilsson, #621-2005-2909) and the Carlsberg Foundation (A. Garm; #2005-1-74).

References

  1. Coates MM, Garm A, Theobald JC, Thompson SH, Nilsson D-E (2006) The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J Exp Biol 209:3758–3765PubMedCrossRefGoogle Scholar
  2. de Couet HG, Tanimura T (1987) Monoclonal antibodies provide evidence that rhodopsin in the outer rhabdomeres of Drosophila melanogaster is not glycosylated. Eur J Cell Biol 44:50–66Google Scholar
  3. Foster RG, Garzia-Fernandez JM, Provencio I, DeGrip WJ (1993) Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. J Comp Physiol [A] 172:33–45CrossRefGoogle Scholar
  4. Garm A, Coates MM, Gad R, Seymour J, Nilsson D-E (2007a) The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol [A] 193:547–557CrossRefGoogle Scholar
  5. Garm A, O’Connor M, Parkefelt L, Nilsson D-E (2007b) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210:3616–3623PubMedCrossRefGoogle Scholar
  6. Garm A, Andersson F, Nilsson D-E (2008) Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Res, in pressGoogle Scholar
  7. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528PubMedCrossRefGoogle Scholar
  8. Janssen JJM (1991) The rod visual pigment rhodopsin: in vitro expression and site specific mutagenesis. PhD Thesis, University of Nijmegen, The NetherlandsGoogle Scholar
  9. Land MF, Nilsson D-E (2006) General-purpose and special-purpose visual systems. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 167–210Google Scholar
  10. Laska G, Hündgen M (1982) Morphologie und Ultrastruktur der Lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108:107–123Google Scholar
  11. Martin VJ (2004) Photoreceptors of cubozoan jellyfish. Hydrobiologia 530/531:135–144CrossRefGoogle Scholar
  12. Nilsson D-E, Coates M, Gislén L, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205PubMedCrossRefGoogle Scholar
  13. Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLoS ONE 2:e1054PubMedCrossRefGoogle Scholar
  14. Santillo S, Orlando P, De Petrocellis L, Cristino L, Guglielmotti V, Musio C (2006) Evolving visual pigments: hints from the opsin-based proteins in a phylogenetically old “eyeless” invertebrate. BioSystems 86:3–17PubMedCrossRefGoogle Scholar
  15. Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol 133:257–267CrossRefGoogle Scholar
  16. Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669CrossRefGoogle Scholar
  17. Schalken JJ (1987) The visual pigment rhodopsin: immunohistochemical aspects and induction of experimental autoimmune uveoretinitis. PhD Thesis, University of Nijmegen, The NetherlandsGoogle Scholar
  18. Skogh C, Garm A, Nilsson D-E, Ekström P (2006) The bilaterally symmetric rhopalial nervous system of box jellyfish. J Morphol 267:1391–1405PubMedCrossRefGoogle Scholar
  19. Suga H, Schmid V, Gehring WJ (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18:51–55PubMedCrossRefGoogle Scholar
  20. Szél A, Tákacs L, Monistori E, Diamantstein T, Vigh-Teichmann I, Röhlich P (1986) Monoclonal antibody recognizing cone visual pigment. Exp Eye Res 43:871–883PubMedCrossRefGoogle Scholar
  21. Vihtelic TS, Doro CJ, Hyde DR (1999) Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Vis Neurosci 16:571–585PubMedCrossRefGoogle Scholar
  22. Weber C (1982a) Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish, Polyorchis penicillatus (Hydromedusae). J Exp Zool 223:231–243PubMedCrossRefGoogle Scholar
  23. Weber C (1982b) Electrical activity in response to light of the ocellus of the hydromedusan, Sarsia tubulosa. Biol Bull 162:413–422CrossRefGoogle Scholar
  24. Yamasu T, Yoshida M (1976) Fine structure of the complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res 170:325–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Peter Ekström
    • 1
  • Anders Garm
    • 1
  • Jonas Pålsson
    • 1
  • Thomas S. Vihtelic
    • 2
  • Dan-Eric Nilsson
    • 1
  1. 1.Department of Cell and Organism Biology, Zoology BuildingLund UniversityLundSweden
  2. 2.Department of Biological Sciences and Center for Zebrafish ResearchUniversity of Notre DameNotre DameUSA

Personalised recommendations