Advertisement

Cell and Tissue Research

, Volume 330, Issue 3, pp 437–446 | Cite as

Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells

  • Changdong Li
  • Weiyuan ZhangEmail author
  • Xiaoxia Jiang
  • Ning Mao
Regular Article

Abstract

Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising cell population for supporting new clinical cellular therapies. Currently, bone marrow represents the main source of MSCs, but their differentiation capacity declines with age. We have identified possible novel multilineage mesenchymal cells from human placenta. In addition to their multilineage differentiation, they have a direct immunosuppressive effect on proliferation of T lymphocytes from human adult peripheral blood (PB) and umbilical cord blood (UCB) in vitro. This immunoregulatory feature strongly implies that they have a potential application in allograft transplantation. Since placenta and UCB can be obtained from the same donor, placenta is an attractive source of MSCs for co-transplantation in conjunction with UCB-derived hematopoietic stem cells to reduce the potential of graft-versus-host disease in recipients. However, the way that they modulate the immune system is unclear. In this investigation, we have addressed the effects of human placental MSCs on various subtypes of UCB-derived and PB-derived T lymphocytes.

Keywords

Mesenchymal stem cells Placenta T lymphocytes Immunosuppression Human 

References

  1. Aggarwal S, Pittenger M (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRefGoogle Scholar
  2. Augello A, Tasso R, Negrini S, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35:1482–1490PubMedCrossRefGoogle Scholar
  3. Bancroft JD, Cook HC (1984) Manual of histological techniques. Churchill Livingstone, EdinburghGoogle Scholar
  4. Barry F, Boynton R, Haynesworth S, Murphy J, Zaia J (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 265:134–139PubMedCrossRefGoogle Scholar
  5. Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 289:519–524PubMedCrossRefGoogle Scholar
  6. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48PubMedCrossRefGoogle Scholar
  7. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219PubMedCrossRefGoogle Scholar
  8. Bruijn M de, Speck N, Peeters M, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–2474PubMedCrossRefGoogle Scholar
  9. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402PubMedCrossRefGoogle Scholar
  10. Conget P, Minguell J (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73PubMedCrossRefGoogle Scholar
  11. Deans R, Moseley A (2000) Mesenchymal stem cells: biology and potential clinical use. Exp Hematol 28:875–884PubMedCrossRefGoogle Scholar
  12. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedCrossRefGoogle Scholar
  13. Klyushnenlova E, Mosca J, McIntosh K (1998) Human mesenchymal stem cells suppress allogeneic T cell responses in vitro: implications for allogeneic transplantation. Blood 92:642aGoogle Scholar
  14. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729PubMedCrossRefGoogle Scholar
  15. Lazarus H, Curtin P, Devine S (2000) Role of mesenchymal stem cells (MSC) in allogeneic transplantation: early phase I clinical results. Blood 392:1691Google Scholar
  16. Lee R, Kim B, Choi I, Kim H, Choi H, Suh K, Bae Y, Jung J (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324PubMedCrossRefGoogle Scholar
  17. Li CD, Zhang WY, Li HL, Jiang XX (2005) Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res 15:539–547PubMedCrossRefGoogle Scholar
  18. Liechty K, MacKenzie T, Shaaban A, Radu A, Moseley A, Deans R, Marshak D, Flake A (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286PubMedCrossRefGoogle Scholar
  19. Macatonia S, Hosken N, Litton M, Vieira P, Hsieh C, Culpepper J, Wysocka M, Trinchieri G, Murphy K, O’Garra A (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154:5071–5079PubMedGoogle Scholar
  20. Mitchell K, Weiss M, Mitchell IB (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60PubMedGoogle Scholar
  21. Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J, Moorman M, Simonetti D, Craig S, Marshak D (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  22. Ralf H (2000) Isolation of primary and immortalized CD34− hematopoietic and mesenchymal stem cells from various sources. Stem Cells 18:1–9CrossRefGoogle Scholar
  23. Rao M, Mattson M (2001) Stem cells and aging: expanding the possibilities. Mech Aging Dev 122:713–734PubMedCrossRefGoogle Scholar
  24. Resnik D (2002) The commercialization of human stem cells: ethical and policy issues. Health Care Anal 10:127–154PubMedCrossRefGoogle Scholar
  25. Steinborn A, Gall C von, Hildenbrand R, Stutte H, Kaufmann M (1998) Identification of placental cytokine-producing cells in term and preterm labor. Obstet Gynecol 91:329–335PubMedCrossRefGoogle Scholar
  26. Toma C, Pittenger M, Cahill K, Byrne B, Kessler P (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRefGoogle Scholar
  27. Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, Mao N (2004) Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl) 117:882–887Google Scholar
  28. Zhao L, Duan W, Reyes M, Keene C, Verfaillie C, Low W (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Changdong Li
    • 1
  • Weiyuan Zhang
    • 1
    Email author
  • Xiaoxia Jiang
    • 2
  • Ning Mao
    • 2
  1. 1.Beijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Department of Cell BiologyInstitute of Basic Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations