Cell and Tissue Research

, Volume 331, Issue 1, pp 301–322

Human stem cells for CNS repair

  • Rike Zietlow
  • Emma L. Lane
  • Stephen B. Dunnett
  • Anne E. Rosser


Although most peripheral tissues have at least a limited ability for self-repair, the central nervous system (CNS) has long been known to be relatively resistant to regeneration. Small numbers of stem cells have been found in the adult brain but do not appear to be able to affect any significant recovery following disease or insult. In the last few decades, the idea of being able to repair the brain by introducing new cells to repair damaged areas has become an accepted potential treatment for neurodegenerative diseases. This review focuses on the suitability of various human stem cell sources for such treatments of both slowly progressing conditions, such as Parkinson’s disease, Huntington’s disease and multiple sclerosis, and acute insult, such as stroke and spinal cord injury. Despite stem cell transplantation having now moved a step closer to the clinic with the first trials of autologous mesenchymal stem cells, the effects shown are moderate and are not yet at the stage of development that can fulfil the hopes that have been placed on stem cells as a means to replace degenerating cells in the CNS. Success will depend on careful investigation in experimental models to enable us to understand not just the practicalities of stem cell use, but also the underlying biological principles.


Stem cells Neurodegenerative disease Stroke Spinal cord injury Transplantation 


  1. Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 21:8108–8118PubMedGoogle Scholar
  2. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236PubMedGoogle Scholar
  3. Anderson L, Burnstein RM, He X, Luce R, Furlong R, Foltynie T, Sykacek P, Menon DK, Caldwell MA (2007) Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp Neurol 204:512–524PubMedGoogle Scholar
  4. Arbab AS, Yocum GT, Wilson LB, Parwana A, Jordan EK, Kalish H, Frank JA (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3:24–32PubMedGoogle Scholar
  5. Armstrong RJ, Watts C, Svendsen CN, Dunnett SB, Rosser AE (2000) Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington’s disease. Cell Transplant 9:55–64PubMedGoogle Scholar
  6. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970PubMedGoogle Scholar
  7. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P, Cesaro P, Hantraye P, Peschanski M (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309PubMedGoogle Scholar
  8. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882PubMedGoogle Scholar
  9. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277PubMedGoogle Scholar
  10. Behrstock S, Svendsen CN (2004) Combining growth factors, stem cells, and gene therapy for the aging brain. Ann N Y Acad Sci 1019:5–14PubMedGoogle Scholar
  11. Bernreuther C, Dihne M, Johann V, Schiefer J, Cui Y, Hargus G, Schmid JS, Xu J, Kosinski CM, Schachner M (2006) Neural cell adhesion molecule L1-transfected embryonic stem cells promote functional recovery after excitotoxic lesion of the mouse striatum. J Neurosci 26:11532–11539PubMedGoogle Scholar
  12. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734PubMedGoogle Scholar
  13. Bjorklund A (1992) Dopaminergic transplants in experimental parkinsonism: cellular mechanisms of graft-induced functional recovery. Curr Opin Neurobiol 2:683–689PubMedGoogle Scholar
  14. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99:2344–2349PubMedGoogle Scholar
  15. Bloch J, Bachoud-Levi AC, Deglon N, Lefaucheur JP, Winkel L, Palfi S, Nguyen JP, Bourdet C, Gaura V, Remy P, Brugieres P, Boisse MF, Baudic S, Cesaro P, Hantraye P, Aebischer P, Peschanski M (2004) Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 15:968–975PubMedGoogle Scholar
  16. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389PubMedGoogle Scholar
  17. Bouhon IA, Joannides A, Kato H, Chandran S, Allen ND (2006) Embryonic stem cell-derived neural progenitors display temporal restriction to neural patterning. Stem Cells 24:1908–1913PubMedGoogle Scholar
  18. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140PubMedGoogle Scholar
  19. Bradbury EJ, McMahon SB (2006) Spinal cord repair strategies: why do they work? Nat Rev Neurosci 7:644–653PubMedGoogle Scholar
  20. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779PubMedGoogle Scholar
  21. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li JY (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24:1433–1440PubMedGoogle Scholar
  22. Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F (2002) Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res 137:257–273PubMedGoogle Scholar
  23. Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustavii B, Bjorklund A, Brooks DJ, Marsden CD, Oertel WH, Quinn NP, Rehncrona S, Lindvall O (2000) Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 123:1380–1390PubMedGoogle Scholar
  24. Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihne M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats.Brain 129:3238–3248PubMedGoogle Scholar
  25. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138PubMedGoogle Scholar
  26. Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN (2001) Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19:475–479PubMedGoogle Scholar
  27. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25:6947–6957PubMedGoogle Scholar
  28. Carlsson T, Winkler C, Lundblad M, Cenci MA, Bjorklund A, Kirik D (2006) Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol Dis 21:657–668PubMedGoogle Scholar
  29. Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158:265–278PubMedGoogle Scholar
  30. Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833PubMedGoogle Scholar
  31. Chandran S, Hunt D, Joannides A, Zhao C, Compston A, Franklin RJ (2007) Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philos Trans R Soc Lond [Biol] (in press)Google Scholar
  32. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688PubMedGoogle Scholar
  33. Cheng H, Cao Y, Olson L (1996) Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273:510–513PubMedGoogle Scholar
  34. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469PubMedGoogle Scholar
  35. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005PubMedGoogle Scholar
  36. Christophersen NS, Brundin P (2007) Large stem cell grafts could lead to erroneous interpretations of behavioral results? Nat Med 13:118–119PubMedGoogle Scholar
  37. Chu K, Kim M, Jeong SW, Kim SU, Yoon BW (2003) Human neural stem cells can migrate, differentiate, and integrate after intravenous transplantation in adult rats with transient forebrain ischemia. Neurosci Lett 343:129–133PubMedGoogle Scholar
  38. Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, Lee ST, Kang L, Lee K, Park DK, Kim SU, Roh JK (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153PubMedGoogle Scholar
  39. Chung S, Shin BS, Hedlund E, Pruszak J, Ferree A, Kang UJ, Isacson O, Kim KS (2006) Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 97:1467–1480PubMedGoogle Scholar
  40. Cipriani S, Bonini D, Marchina E, Balgkouranidou I, Caimi L, Grassi ZG, Barlati S (2007) Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int 31(8):845–850PubMedGoogle Scholar
  41. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117PubMedGoogle Scholar
  42. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:e283PubMedGoogle Scholar
  43. Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, Del Bo R, Comi GP (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518–2532PubMedGoogle Scholar
  44. De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, Cattaneo A (2005) Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA 102:3811–3816PubMedGoogle Scholar
  45. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064PubMedGoogle Scholar
  46. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54PubMedGoogle Scholar
  47. Ende N, Chen R (2001) Human umbilical cord blood cells ameliorate Huntington’s disease in transgenic mice. J Med 32:231–240PubMedGoogle Scholar
  48. Ende N, Chen R (2002) Parkinson’s disease mice and human umbilical cord blood. J Med 33:173–180PubMedGoogle Scholar
  49. Ende N, Weinstein F, Chen R, Ende M (2000) Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci 67:53–59PubMedGoogle Scholar
  50. Ende N, Chen R, Ende-Harris D (2001) Human umbilical cord blood cells ameliorate Alzheimer’s disease in transgenic mice. J Med 32:241–247PubMedGoogle Scholar
  51. Fallahi-Sichani M, Soleimani M, Najafi SM, Kiani J, Arefian E, Atashi A (2007) In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biol Int 31:299–303PubMedGoogle Scholar
  52. Fassas A, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E, Carreras E, Graus F, Kashyap A, Openshaw H, Schipperus M, Deconinck E, Mancardi G, Marmont A, Hansz J, Rabusin M, Zuazu Nagore FJ, Besalduch J, Dentamaro T, Fouillard L, Hertenstein B, La Nasa G, Musso M, Papineschi F, Rowe JM, Saccardi R, Steck A, Kappos L, Gratwohl A, Tyndall A, Samijn J (2002) Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol 249:1088–1097PubMedGoogle Scholar
  53. Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23:371–383PubMedGoogle Scholar
  54. Fawcett JW, Barker RA, Dunnett SB (1995) Dopaminergic neuronal survival and the effects of bFGF in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp Brain Res 106:275–282PubMedGoogle Scholar
  55. Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960PubMedGoogle Scholar
  56. Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714PubMedGoogle Scholar
  57. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719PubMedGoogle Scholar
  58. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124PubMedGoogle Scholar
  59. Galvin KA, Jones DG (2006) Adult human neural stem cells for autologous cell replacement therapies for neurodegenerative disorders. NeuroRehabilitation 21:255–265PubMedGoogle Scholar
  60. Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12:255–270PubMedGoogle Scholar
  61. Heese K, Low JW, Inoue N (2006) Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15:1–12PubMedGoogle Scholar
  62. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, Zhang J, Zhang F, Gu Z, Li Y, Song Y, Hao W, Pang S, Sun J (2003) Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 116:1488–1491Google Scholar
  63. Iacovitti L, Donaldson AE, Marshall CE, Suon S, Yang M (2007) A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Res 1127:19–25PubMedGoogle Scholar
  64. Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D, Kimura F, Dezawa M, Coffin RS, Otsuki Y, Kuroiwa T, Miyatake S (2005) Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by Herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke 36:2725–2730PubMedGoogle Scholar
  65. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122PubMedGoogle Scholar
  66. In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, Kanhai HH (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549PubMedGoogle Scholar
  67. Inoue M, Honmou O, Oka S, Houkin K, Hashi K, Kocsis JD (2003) Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord. Glia 44:111–118PubMedGoogle Scholar
  68. Isacson O, Bjorklund LM, Schumacher JM (2003) Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson’s disease by stem cells. Ann Neurol 53 (Suppl 3):S135–S146PubMedGoogle Scholar
  69. Ishibashi S, Sakaguchi M, Kuroiwa T, Yamasaki M, Kanemura Y, Shizuko I, Shimazaki T, Onodera M, Okano H, Mizusawa H (2004) Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res 78:215–223PubMedGoogle Scholar
  70. Jain M, Armstrong RJ, Tyers P, Barker RA, Rosser AE (2003) GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 182:113–123PubMedGoogle Scholar
  71. Ji JF, He BP, Dheen ST, Tay SS (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427PubMedGoogle Scholar
  72. Julien JP (2007) ALS: astrocytes move in as deadly neighbors. Nat Neurosci 10:535–537PubMedGoogle Scholar
  73. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389PubMedGoogle Scholar
  74. Kaviani A, Young A, Fuchs J, Oh J-Y, Jennings RW, Fauza D (2002) Reduced immunogenicity of mesenchymal amniocytes during expansion in vitro: implications for heterologous tissue engineering applications. Pediatr Surg 195:S40Google Scholar
  75. Keirstead HS (2005) Stem cells for the treatment of myelin loss. Trends Neurosci 28:677–683PubMedGoogle Scholar
  76. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705PubMedGoogle Scholar
  77. Kelly CM, Tyers P, Borg MT, Svendsen CN, Dunnett SB, Rosser AE (2005) EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Brain Res Bull 68:83–94PubMedGoogle Scholar
  78. Kim SU (2007) Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 29:193–201PubMedGoogle Scholar
  79. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56PubMedGoogle Scholar
  80. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521PubMedGoogle Scholar
  81. Kleppner SR, Robinson KA, Trojanowski JQ, Lee VM (1995) Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J Comp Neurol 357:618–632PubMedGoogle Scholar
  82. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45PubMedCrossRefGoogle Scholar
  83. Kuan WL, Lin R, Tyers P, Barker RA (2007) The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias. Neurobiol Dis 25:594–608PubMedGoogle Scholar
  84. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104PubMedGoogle Scholar
  85. Lane EL, Winkler C, Brundin P, Cenci MA (2006) The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat. Neurobiol Dis 22:334–345PubMedGoogle Scholar
  86. Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, Kim M (2005) Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 52:243–249PubMedGoogle Scholar
  87. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS ONE 2:e156PubMedGoogle Scholar
  88. Lescaudron L, Unni D, Dunbar GL (2003) Autologous adult bone marrow stem cell transplantation in an animal model of Huntington’s disease: behavioral and morphological outcomes. Int J Neurosci 113:945–956PubMedGoogle Scholar
  89. Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277:2000–2002PubMedGoogle Scholar
  90. Li Y, Field PM, Raisman G (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 18:10514–10524PubMedGoogle Scholar
  91. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M (2001) Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 316:67–70PubMedGoogle Scholar
  92. Liang P, Jin LH, Liang T, Liu EZ, Zhao SG (2006) Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Chin Med J (Engl) 119:1331–1338Google Scholar
  93. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203PubMedGoogle Scholar
  94. Lindvall O (1998) Update on fetal transplantation: the Swedish experience. Mov Disord 13 (Suppl 1):83–87PubMedGoogle Scholar
  95. Lindvall O, Bjorklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1:382–393PubMedGoogle Scholar
  96. Liu S, Liu H, Pan Y, Tang S, Xiong J, Hui N, Wang S, Qi Z, Li L (2004) Human embryonic germ cells isolation from early stages of post-implantation embryos. Cell Tissue Res 318:525–531PubMedGoogle Scholar
  97. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11:703–704PubMedGoogle Scholar
  98. Macias MY, Syring MB, Pizzi MA, Crowe MJ, Alexanian AR, Kurpad SN (2006) Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol 201:335–348PubMedGoogle Scholar
  99. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66PubMedGoogle Scholar
  100. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso R, Madon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4:158–161PubMedGoogle Scholar
  101. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R, Testa L, Livigni S, Fagioli F (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28:523–526PubMedGoogle Scholar
  102. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 475:211–219PubMedGoogle Scholar
  103. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412PubMedGoogle Scholar
  104. Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, Dagher A, Isacson O (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128:1498–1510PubMedGoogle Scholar
  105. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782PubMedGoogle Scholar
  106. Moviglia GA, Fernandez VR, Brizuela JA, Saslavsky J, Vrsalovic F, Varela G, Bastos F, Farina P, Etchegaray G, Barbieri M, Martinez G, Picasso F, Schmidt Y, Brizuela P, Gaeta CA, Costanzo H, Moviglia Brandolino MT, Merino S, Pes ME, Veloso MJ, Rugilo C, Tamer I, Shuster GS (2006) Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8:202–209PubMedGoogle Scholar
  107. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441PubMedGoogle Scholar
  108. Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC (2005) Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann N Y Acad Sci 1049:84–96PubMedGoogle Scholar
  109. Nathan PW (1994) Effects on movement of surgical incisions into the human spinal cord. Brain 117:337–346PubMedGoogle Scholar
  110. Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, Decesare S, Elder EM, Zhang PJ, Jacobs A, McGrogan M, Lee VM, Trojanowski JQ (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206PubMedGoogle Scholar
  111. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414PubMedGoogle Scholar
  112. Paino CL, Bunge MB (1991) Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp Neurol 114:254–257PubMedGoogle Scholar
  113. Park CH, Minn YK, Lee JY, Choi DH, Chang MY, Shim JW, Ko JY, Koh HC, Kang MJ, Kang JS, Rhie DJ, Lee YS, Son H, Moon SY, Kim KS, Lee SH (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276PubMedGoogle Scholar
  114. Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57:298–302PubMedGoogle Scholar
  115. Penn RD, Kroin JS, York MM, Cedarbaum JM (1997) Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery 40:94–99PubMedGoogle Scholar
  116. Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140PubMedGoogle Scholar
  117. Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128:2977–2986PubMedGoogle Scholar
  118. Pineda JR, Rubio N, Akerud P, Urban N, Badimon L, Arenas E, Alberch J, Blanco J, Canals JM (2007) Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model: optical neuroimage tracking of brain-grafted cells. Gene Ther 14:118–128PubMedGoogle Scholar
  119. Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M, Marchesi C, Calzarossa C, Soligo D, Lambertenghi-Deliliers G, Bresolin N, Silani V, Torrente Y, Polli E (2007) Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 16:41–55PubMedGoogle Scholar
  120. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694PubMedGoogle Scholar
  121. Quinn NP (1990) The clinical application of cell grafting techniques in patients with Parkinson’s disease. Prog Brain Res 82:619–625PubMedGoogle Scholar
  122. Raisman G, Li Y (2007) Repair of neural pathways by olfactory ensheathing cells. Nat Rev Neurosci 8:312–319PubMedGoogle Scholar
  123. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedGoogle Scholar
  124. Rodriguez-Gomez JA, Lu JQ, Velasco I, Rivera S, Zoghbi SS, Liow JS, Musachio JL, Chin FT, Toyama H, Seidel J, Green MV, Thanos PK, Ichise M, Pike VW, Innis RB, McKay RD (2007) Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 25:918–928PubMedGoogle Scholar
  125. Roitberg BZ, Mangubat E, Chen EY, Sugaya K, Thulborn KR, Kordower JH, Pawar A, Konecny T, Emborg ME (2006) Survival and early differentiation of human neural stem cells transplanted in a nonhuman primate model of stroke. J Neurosurg 105:96–102PubMedGoogle Scholar
  126. Rosenberg MB, Friedmann T, Robertson RC, Tuszynski M, Wolff JA, Breakefield XO, Gage FH (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242:1575–1578PubMedGoogle Scholar
  127. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedGoogle Scholar
  128. Saccardi R, Kozak T, Bocelli-Tyndall C, Fassas A, Kazis A, Havrdova E, Carreras E, Saiz A, Lowenberg B, Boekhorst PA te, Gualandio F, Openshaw H, Longo G, Pagliai F, Massacesi L, Deconink E, Ouyang J, Nagore FJ, Besalduch J, Lisukov IA, Bonini A, Merelli E, Slavino S, Gratwohl A, Passweg J, Tyndall A, Steck AJ, Andolina M, Capobianco M, Martin JL, Lugaresi A, Meucci G, Saez RA, Clark RE, Fernandez MN, Fouillard L, Herstenstein B, Koza V, Cocco E, Baurmann H, Mancardi GL (2006) Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation Autoimmune Diseases Working Party Database. Mult Scler 12:814–823PubMedGoogle Scholar
  129. Samijn JP, Boekhorst PA te, Mondria T, PA van Doorn, Flach HZ, Meche FG van der, Cornelissen J, Hop WC, Lowenberg B, Hintzen RQ (2006) Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry 77:46–50PubMedGoogle Scholar
  130. Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, Bickford PC, Klasko SK, El Badri NS (2005) Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci 1049:67–83PubMedGoogle Scholar
  131. Sanchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD (2001) In vitro generation and transplantation of precursor-derived human dopamine neurons. J Neurosci Res 65:284–288PubMedGoogle Scholar
  132. Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR (2002) Cell transplantation for stroke. Ann Neurol 52:266–275PubMedGoogle Scholar
  133. Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 98:113–118PubMedGoogle Scholar
  134. Suon S, Yang M, Iacovitti L (2006) Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson’s disease. Brain Res 1106:46–51PubMedGoogle Scholar
  135. Svendsen CN, Clarke DJ, Rosser AE, Dunnett SB (1996) Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp Neurol 137:376–388PubMedGoogle Scholar
  136. Sykova E, Jendelova P, Urdzikova L, Lesny P, Hejcl A (2006) Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129PubMedGoogle Scholar
  137. Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G, Xu L, Hess DC, Borlongan CV (2007) Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant 16:159–169PubMedGoogle Scholar
  138. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545PubMedGoogle Scholar
  139. Thompson L, Barraud P, Andersson E, Kirik D, Bjorklund A (2005) Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 25:6467–6477PubMedGoogle Scholar
  140. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747PubMedGoogle Scholar
  141. Timmer M, Grosskreutz J, Schlesinger F, Krampfl K, Wesemann M, Just L, Bufler J, Grothe C (2006) Dopaminergic properties and function after grafting of attached neural precursor cultures. Neurobiol Dis 21:587–606PubMedGoogle Scholar
  142. Totoiu MO, Nistor GI, Lane TE, Keirstead HS (2004) Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 187:254–265PubMedGoogle Scholar
  143. Tsai MS, Hwang SM, Tsai YL, Cheng FC, Lee JL, Chang YJ (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod 74:545–551PubMedGoogle Scholar
  144. Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, Hanley NA (2003) Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21:598–609PubMedGoogle Scholar
  145. Turnpenny L, Spalluto CM, Perrett RM, O’Shea M, Hanley KP, Cameron IT, Wilson DI, Hanley NA (2006) Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells 24:212–220PubMedGoogle Scholar
  146. Tuszynski MH, Thal L, Pay M, Salmon DP, HS U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555PubMedGoogle Scholar
  147. Vazey EM, Chen K, Hughes SM, Connor B (2006) Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp Neurol 199:384–396PubMedGoogle Scholar
  148. Villa A, Navarro-Galve B, Bueno C, Franco S, Blasco MA, Martinez-Serrano A (2004) Long-term molecular and cellular stability of human neural stem cell lines. Exp Cell Res 294:559–570PubMedGoogle Scholar
  149. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737PubMedGoogle Scholar
  150. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100:2088–2093PubMedGoogle Scholar
  151. Winkler J, Thal LJ (1995) Effects of nerve growth factor treatment on rats with lesions of the nucleus basalis magnocellularis produced by ibotenic acid, quisqualic acid, and AMPA. Exp Neurol 136:234–250PubMedGoogle Scholar
  152. Winkler C, Kirik D, Bjorklund A, Dunnett SB (2000) Transplantation in the rat model of Parkinson’s disease: ectopic versus homotopic graft placement. Prog Brain Res 127:233–265PubMedCrossRefGoogle Scholar
  153. Winkler C, Kirik D, Bjorklund A, Cenci MA (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186PubMedGoogle Scholar
  154. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402PubMedGoogle Scholar
  155. Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN (2006) Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 312:2107–2120PubMedGoogle Scholar
  156. Xiao J, Nan Z, Motooka Y, Low WC (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14:722–733PubMedGoogle Scholar
  157. Yamashita T, Ninomiya M, Hernandez AP, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636PubMedGoogle Scholar
  158. Yasuhara T, Date I (2007) Intracerebral transplantation of genetically engineered cells for Parkinson’s disease: toward clinical application. Cell Transplant 16:125–132PubMedGoogle Scholar
  159. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor (GM-CSF): phase I/II clinical trial. Stem Cells 25:2066–2073PubMedGoogle Scholar
  160. Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940PubMedGoogle Scholar
  161. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D, Funakoshi H, Kajimoto Y, Nakamura T, Dezawa M, Shibata MA, Otsuki Y, Coffin RS, Liu WD, Kuroiwa T, Miyatake S (2006) Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 26:1176–1188PubMedGoogle Scholar
  162. Zhu J, Wu X, Zhang HL (2005) Adult neural stem cell therapy: expansion in vitro, tracking in vivo and clinical transplantation. Curr Drug Targets 6:97–110PubMedGoogle Scholar
  163. Zietlow R, Pekarik V, Armstrong RJ, Tyers P, Dunnett SB, Rosser AE (2005) The survival of neural precursor cell grafts is influenced by in vitro expansion. J Anat 207:227–240PubMedGoogle Scholar
  164. Zigmond MJ, Abercrombie ED, Berger TW, Grace AA, Stricker EM (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 13:290–296PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Rike Zietlow
    • 1
  • Emma L. Lane
    • 1
  • Stephen B. Dunnett
    • 1
  • Anne E. Rosser
    • 1
    • 2
  1. 1.Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUK
  2. 2.Department of Neurology and Medical GeneticsUniversity of Wales College of MedicineCardiffUK

Personalised recommendations