Cell and Tissue Research

, Volume 330, Issue 1, pp 29–34 | Cite as

Impact of melatonin receptors on pCREB and clock-gene protein levels in the murine retina

Regular Article

Abstract

In several mammalian species, the retina is capable of synthesizing melatonin and contains an autonomous circadian clock that relies on interlocking transcriptional/translational feedback loops involving several clock genes, such as Per1 and Cry2. Our previous investigations have shown remarkable differences in retinae of melatonin-deficient (C57BL) and melatonin-proficient (C3H) mice with regard to the protein levels of PER1, CRY2, and phosphorylated (p) cyclic AMP response element binding protein (CREB). To elucidate the melatonin receptor type possibly responsible for these differences, we have performed immunocytochemical analyses for PER1, CRY2, and pCREB in retinae of melatonin-proficient wild type (WT) mice and mice with targeted deletions of the MT1 receptor (MelaaBB) or the MT1 and MT2 receptors (Melaabb) at four different time points. Immunoreactions for PER1, CRY2 and pCREB were localized to the nuclei of cells in the inner nuclear layer (INL) and ganglion cell layer (GC) of all strains. Surprisingly, in MelaaBB and Melaabb the day/night rhythm of pCREB, PER1, and CRY2 levels was not abolished, but the maxima and minima of PER1 were 180° out of phase as compared to the WT. These data suggest that MT1 and MT2 melatonin receptors are not necessary to maintain rhythmic changes in clock-gene protein levels in the murine retina, but, as shown for PER1, appear to be involved in internal synchronization.

Keywords

Circadian rhythm Clock-gene proteins Melatonin Melatonin receptors Retina Murine 

References

  1. Allada R, Emery P, Takahashi JS, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 24:1091–1119PubMedCrossRefGoogle Scholar
  2. Besharse JC, Dunis DA (1983) Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219:1341–1343PubMedCrossRefGoogle Scholar
  3. Besharse JC, Iuvone PM (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135PubMedCrossRefGoogle Scholar
  4. Boatright JH, Rubim NM, Iuvone PM (1994) Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Neurosci 11:1013–1018Google Scholar
  5. Dinet V, Ansari N, Torres-Farfan C, Korf HW (2007) Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J Pineal Res 42:83–91PubMedCrossRefGoogle Scholar
  6. Doyle SE, Grace MS, Mclvor W, Menaker M (2002a) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci 19:593–601PubMedCrossRefGoogle Scholar
  7. Doyle SE, Mclvor W, Menaker M (2002b) Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem 83:211–219PubMedCrossRefGoogle Scholar
  8. Dubocovich ML (1983) Melatonin is a potent modulator of dopamine release in the retina. Nature 306:782–784PubMedCrossRefGoogle Scholar
  9. Fujieda H, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (1999) Expression of mt1 melatonin receptor in rat retina: evidence for multiple cell targets for melatonin. Neuroscience 93:793–799PubMedCrossRefGoogle Scholar
  10. Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel (1b) melatonin receptor. Mol Cell Biol 23:1054–1060PubMedCrossRefGoogle Scholar
  11. Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, pp 467Google Scholar
  12. Korf HW, Stehle JH (2002) The circadian system: circuits-cells-clock genes. Cell Tissue Res 309:1–2PubMedCrossRefGoogle Scholar
  13. Li GL, Li P, Yang XL (2001) Melatonin modulates gamma-aminobutyric acid (A) receptor-mediated currents on isolated carp retinal neurons. Neurosci Lett 301:49–53PubMedCrossRefGoogle Scholar
  14. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102PubMedCrossRefGoogle Scholar
  15. Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102PubMedCrossRefGoogle Scholar
  16. Okamura H, Yamaguchi S, Yagita K (2002) Molecular machinery of the circadian clock in mammals. Cell Tissue Res 309:47–56PubMedCrossRefGoogle Scholar
  17. Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676PubMedCrossRefGoogle Scholar
  18. Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185PubMedCrossRefGoogle Scholar
  19. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain; the Mel1b melatonin receptor. Proc Natl Acad Sci USA 92:8734–8738PubMedCrossRefGoogle Scholar
  20. Roseboom PH, Namboodiri MA, Zimonjic DB, Popoescu NC, Rodriguez IR, Gastel JA, Klein DC (1998) Natural melatonin “knockdown” in C57bl/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Mol Brain Res 63:189–197PubMedCrossRefGoogle Scholar
  21. Ruan G, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the mammalian retina. Proc Natl Acad Sci USA 103:9703–9708PubMedCrossRefGoogle Scholar
  22. Sakamoto K, Oishi K, Shiraishi M, Hamano S, Otsuka H, Miyake Y, Ishida N (2000) Two circadian oscillatory mechanisms in the mammalian retina. Neuroreport 11:3995–3997PubMedCrossRefGoogle Scholar
  23. Sakamoto K, Liu C, Tosini G (2004) Circadian rhythms in the retina of rats with photoreceptor degeneration. J Neurochem 90:1019–1024PubMedCrossRefGoogle Scholar
  24. Savaskan E, Wirz-Justice A, Olivieri G, Pache M, Krauchi K, Brydon L, Jockers R, Muller-Spahn F, Meyer P (2002) Distribution of melatonin MT1 receptor immunoreactivity in human retina. J Histochem Cytochem 50:519–526PubMedGoogle Scholar
  25. Scher J, Wankiewicz E, Brown GM, Fujieda H (2002) MT(1) melatonin receptor in the human retina: expression and localization. Invest Ophthalmol Vis Sci 43:889–897PubMedGoogle Scholar
  26. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269PubMedCrossRefGoogle Scholar
  27. Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577PubMedGoogle Scholar
  28. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–10011PubMedCrossRefGoogle Scholar
  29. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421PubMedCrossRefGoogle Scholar
  30. Tosini G, Menaker M (1998a) Multioscillatory circadian organization in a vertebrate,Iguana iguana. J Neurosci 18:1105–1114PubMedGoogle Scholar
  31. Tosini G, Menaker M (1998b) The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res 789:221–228PubMedCrossRefGoogle Scholar
  32. White MP, Fisher LJ (1989) Effects of exogenous melatonin on circadian disc shedding in the albino rat retina. Vision Res 29:167–179PubMedCrossRefGoogle Scholar
  33. Wiechmann AF, Yang XL, Wu SM, Hollyfield JG (1988) Melatonin enhances horizontal cell sensitivity in salamander retina. Brain Res 453:377–380PubMedCrossRefGoogle Scholar
  34. Wiechmann AF, Udin SB, Summers Rada JA (2004) Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus leavis. Exp Eye Res 79:585–594PubMedCrossRefGoogle Scholar
  35. Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715PubMedCrossRefGoogle Scholar
  36. Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci USA 103:6386–6391PubMedCrossRefGoogle Scholar
  37. Zawilska JB, Berezinska M, Rosiak J, Vivien-Roels B, Nowak JZ (2003) The relationship between melatonin and dopamine rhythms in the duck retina. Neurosci Lett 347:37–40PubMedCrossRefGoogle Scholar
  38. Zhang DQ, Zhou T, Ruan GX, McMahon DG (2005) Circadian rhythm of Period1 clock gene expression in NOS amacrine cells of the mouse retina. Brain Res 1050:101–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dr. Senckenbergische AnatomieInstitut für Anatomie II, Johann Wolfgang Goethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations