Cell and Tissue Research

, Volume 329, Issue 1, pp 169–178 | Cite as

Study of tauopathies by comparing Drosophila and human tau in Drosophila

  • Xinping Chen
  • Yan Li
  • Junbo Huang
  • Dawei Cao
  • Guoying Yang
  • Weijie Liu
  • Huimin Lu
  • Aike Guo
Regular Article


The microtubule-binding protein tau has been investigated for its contribution to various neurodegenerative disorders. However, the findings from transgenic studies, using the same tau transgene, vary widely among different laboratories. Here, we have investigated the potential mechanisms underlying tauopathies by comparing Drosophila (d-tau) and human (h-tau) tau in a Drosophila model. Overexpression of a single copy of either tau isoform in the retina results in a similar rough eye phenotype. However, co-expression of Par-1 with d-tau leads to lethality, whereas co-expression of Par-1 with h-tau has little effect on the rough eye phenotype. We have found analogous results by comparing larval proteomes. Through genetic screening and proteomic analysis, we have identified some important potential modifiers and tau-associated proteins. These results suggest that the two tau genes differ significantly. This comparison between species-specific isoforms may help to clarify whether the homologous tau genes are conserved.


Tau Tauopathy Comparison Conservation Drosophila 



We are grateful to Prof. Rongqiao He for his manuscript annotation, to Prof. Kejing Deng (Fudan University, China), Mel B. Feany, Efthimios M.C. Skoulakis, Bingwei Lu, and Suzanne Eaton for kindly donating valuable fly lines, and to Dr. Jianzheng Guo, Shiyu Xu, and Ziyou Cui for their constructive advice regarding our work.

Supplementary material

441_2007_401_MOESM1_ESM.doc (3.2 mb)
Supplementary Data (DOC 3.38 mb)


  1. Baker M, Kwok JB, Kucera S, Crook R, Farrer M, Houlden H, Isaacs A, Lincoln S, Onstead L, Hardy J, Wittenberg L, Dodd P, Webb S, Hayward N, Tannenberg T, Andreadis A, Hallupp M, Schofield P, Dark F, Hutton M (1997) Localization of frontotemporal dementia with Parkinsonism in an Australian kindred to chromosome 17q21-22. Ann Neurol 42:794–798PubMedCrossRefGoogle Scholar
  2. Bertram L, McQueen M, Mullin K, Blacker D, Tanzi R (2006) The AlzGene database, Alzheimer research forum. Available at: http://www.alzgene.org. Accessed July 13, 2006
  3. Chau KW, Chan WY, Shaw PC, Chan HY (2006) Biochemical investigation of tau protein phosphorylation status and its solubility properties in Drosophila. Biochem Biophys Res Commun 346:150–159PubMedCrossRefGoogle Scholar
  4. Chee F, Mudher A, Newman TA, Cuttle M, Lovestone S, Shepherd D (2006) Overexpression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Biochem Soc Trans 34:88–90PubMedCrossRefGoogle Scholar
  5. Delacourte A, Buee L (2000) Tau pathology: a marker of neurodegenerative disorders. Curr Opin Neurol 13:371–376PubMedCrossRefGoogle Scholar
  6. Delobel P, Flament S, Hamdane M, Mailliot C, Sambo AV, Begard S, Sergeant N, Delacourte A, Vilain JP, Buee L (2002) Abnormal tau phosphorylation of the Alzheimer-type also occurs during mitosis. J Neurochem 83:412–420PubMedCrossRefGoogle Scholar
  7. Doerflinger H, Benton R, Shulman JM, St Johnston D (2003) The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 130:3965–3975PubMedCrossRefGoogle Scholar
  8. Götz J, Probst A, Spillantini MG, Schäfer T, Jakes R, Bürki K, Goedert M (1995) Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 14:1304–1313PubMedGoogle Scholar
  9. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986a) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089PubMedGoogle Scholar
  10. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986b) Abnormal phosphorylation of the microtubule associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917PubMedCrossRefGoogle Scholar
  11. Guo A, Liu L, Xia SZ, Feng CH, Wolf R, Heisenberg M (1996) Conditioned visual flight orientation in Drosophila: dependence on age, practice, and diet. Learn Mem 3:49–59PubMedCrossRefGoogle Scholar
  12. Hall GF, Yao J, Lee G (1997) Human tau becomes phosphorylated and forms filamentous deposits when overexpressed in lamprey central neurons in situ. Proc Natl Acad Sci USA 94:4733–4738PubMedCrossRefGoogle Scholar
  13. Hannus M, Feiguin F, Heisenberg CP, Eaton S (2002) Planar cell polarization requires Widerborst, a B’ regulatory subunit of protein phosphatase 2A. Development 129:3493–3503PubMedGoogle Scholar
  14. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129PubMedGoogle Scholar
  15. Heidary G, Fortini ME (2001) Identification and characterization of the Drosophila tau homolog. Mech Dev 108:171–178PubMedCrossRefGoogle Scholar
  16. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705PubMedCrossRefGoogle Scholar
  17. Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34:509–519PubMedCrossRefGoogle Scholar
  18. Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS, Schulz C, Hui KS, Wiedau-Pazos M, Vinters HV, Binder LI, Geschwind DH, Jackson GR (2006) A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51:549–560PubMedCrossRefGoogle Scholar
  19. Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol 16:230–241PubMedCrossRefGoogle Scholar
  20. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048PubMedCrossRefGoogle Scholar
  21. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100:980–9985CrossRefGoogle Scholar
  22. Lemaitre B, Meister M, Govind S, Georgel P, Steward R, Reichhart JM, Hoffmann JA (1995) Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J 14:536–545PubMedGoogle Scholar
  23. Li Y, Liu T, Peng Y, Yuan C, Guo A (2004) Specific functions of Drosophila amyloid precursor-like protein in the development of nervous system and nonneural tissues. J Neurobiol 61:343–358PubMedCrossRefGoogle Scholar
  24. Li C, Tan YX, Zhou H, Ding SJ, Li SJ, Ma DJ, Man XB, Hong Y, Zhang L, Li L, Xia QC, Wu JR, Wang HY, Zeng R (2005) Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: identification of potential tumor markers. Proteomics 5:1125–1139PubMedCrossRefGoogle Scholar
  25. Mershin A, Pavlopoulos E, Fitch O, Braden BC, Nanopoulos DV, Skoulakis EM (2004) Learning and memory deficits upon tau accumulation in Drosophila mushroom body neurons. Learn Mem 11:277–287PubMedCrossRefGoogle Scholar
  26. Nishimura I, Yang Y, Lu B (2004) PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116:671–682PubMedCrossRefGoogle Scholar
  27. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825PubMedCrossRefGoogle Scholar
  28. Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL, Hong M, Ishihara T, Lee VM, Trojanowski JQ, Jakes R, Crowther RA, Spillantini MG, Burki K, Goedert M (2000) Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 99:469–481CrossRefGoogle Scholar
  29. Robertson J, Loviny TL, Goedert M, Jakes R, Murray KJ, Anderton BH, Hanger DP (1993) Phosphorylation of tau by cyclic-AMP-dependent protein kinase. Dementia 4:256–263PubMedGoogle Scholar
  30. Roks G, Dermaut B, Heutink P, Julliams A, Backhovens H, Van de Broeck M, Serneels S, Hofman A, Van Broeckhoven C, Duijn CM van, Cruts M (1999) Mutation screening of the tau gene in patients with early-onset Alzheimer’s disease. Neurosci Lett 277:137–139PubMedCrossRefGoogle Scholar
  31. Russ C, Powell JF, Zhao J, Baker M, Hutton M, Crawford F, Mullan M, Roks G, Cruts M, Lovestone S (2001) The microtubule associated protein Tau gene and Alzheimer’s disease-an association study and meta-analysis. Neurosci Lett 314:92–96PubMedCrossRefGoogle Scholar
  32. Sang TK, Jackson GR (2005) Drosophila models of neurodegenerative disease. NeuroRx 2:438–446PubMedCrossRefGoogle Scholar
  33. Scherzer CR, Jensen RV, Gullans SR, Feany MB (2003) Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease. Hum Mol Genet 12:2457–2466PubMedCrossRefGoogle Scholar
  34. Shahani N, Brandt R (2002) Functions and malfunctions of the tau proteins. Cell Mol Life Sci 59:1668–1680PubMedCrossRefGoogle Scholar
  35. Shulman JM, Feany MB (2003) Genetic modifiers of tauopathy in Drosophila. Genetics 165:1233–1242PubMedGoogle Scholar
  36. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95:7737–7741PubMedCrossRefGoogle Scholar
  37. Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, Geerts H, Mercken M, Sciot R, Van Lommel A, Loos R, Van Leuven F (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165PubMedGoogle Scholar
  38. Spittaels K, Van den Haute C, Van Dorpe J, Geerts H, Mercken M, Bruynseels K, Lasrado R, Vandezande K, Laenen I, Boon T, Van Lint J, Vandenheede J, Moechars D, Loos R, Van Leuven F (2000) Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 275:41340–41349PubMedCrossRefGoogle Scholar
  39. Sullivan W, Ashburner M, Hawley RS (2000) Drosophila protocols. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  40. Tomasiewicz HG, Flaherty DB, Soria JP, Wood JG (2002) Transgenic zebrafish model of neurodegeneration. J Neurosci Res 70:734–745PubMedCrossRefGoogle Scholar
  41. Torroja L, Chu H, Kotovsky I, White K (1999) Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport. Curr Biol 9:489–492PubMedCrossRefGoogle Scholar
  42. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862PubMedCrossRefGoogle Scholar
  43. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293:711–714PubMedCrossRefGoogle Scholar
  44. Yancopoulou D, Spillantini MG (2003) Tau protein in familial and sporadic diseases. Neuromol Med 4:37–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xinping Chen
    • 1
    • 2
  • Yan Li
    • 4
  • Junbo Huang
    • 3
  • Dawei Cao
    • 3
  • Guoying Yang
    • 3
  • Weijie Liu
    • 1
    • 2
  • Huimin Lu
    • 1
  • Aike Guo
    • 1
    • 3
  1. 1.State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate SchoolChinese Academy of SciencesBeijingChina
  3. 3.Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Key Laboratory of NeurobiologyChinese Academy of SciencesShanghaiChina
  4. 4.Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonChina

Personalised recommendations