Cell and Tissue Research

, Volume 329, Issue 1, pp 147–157 | Cite as

The ring nerve of the box jellyfish Tripedalia cystophora

  • A. Garm
  • Y. Poussart
  • L. Parkefelt
  • P. Ekström
  • D-E. Nilsson
Regular Article


Box jellyfish have the most elaborate sensory system and behavioural repertoire of all cnidarians. Sensory input largely comes from 24 eyes situated on four club-shaped sensory structures, the rhopalia, and behaviour includes obstacle avoidance, light shaft attractance and mating. To process the sensory input and convert it into the appropriate behaviour, the box jellyfish have a central nervous system (CNS) but this is still poorly understood. The CNS has two major components: the rhopalial nervous system and the ring nerve. The rhopalial nervous system is situated within the rhopalia in close connection with the eyes, whereas the ring nerve encircles the bell. We describe the morphology of the ring nerve of the box jellyfish Tripedalia cystophora as ascertained by normal histological techniques, immunohistochemistry and transmission electron microscopy. By light microscopy, we have estimated the number of cells in the ring nerve by counting their nuclei. In cross sections at the ultrastructural level, the ring nerve appears to have three types of neurites: (1) small “normal”-looking neurites, (2) medium-sized neurites almost completely filled by electron-lucent vacuoles and (3) giant neurites. In general, only one giant neurite is seen on each section; this type displays the most synapses. Epithelial cells divide the ring nerve into compartments, each having a tendency to contain neurites of similar morphology. The number and arrangement of the compartments vary along the length of the ring nerve.


Central nervous system Ring nerve Neurite morphology Histology Immunohistochemistry Transmission electron microscopy Cubozoa Box jellyfish, Tripedalia cystophora (Cnidaria) 



The authors appreciate the skilled laboratory work performed by Rita Wallén and Carina Rasmussen. They also thank the staff, especially Wilson Rovira, at the marine station of Isla Magueyes for all their help.


  1. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247CrossRefGoogle Scholar
  2. Anderson PAV, Thompson LF, Moneypenny CG (2004) Evidence for a common pattern of peptidergic innervation of cnidocytes. Biol Bull 207:141–146PubMedCrossRefGoogle Scholar
  3. Chapman DM (1978) Microanatomy of the cubopolyp, Tripedalia cystophora (class Cubozoa). Helgoländer Wiss Meeresuntersuch 31:128–168CrossRefGoogle Scholar
  4. Claus C (1878) Ueber Charybdea marsupialis. Arb Zool Inst Universität Wien 1:1–56Google Scholar
  5. Garm A, Ekström P, Boudes M, Nilsson DE (2006) Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325:333–343PubMedCrossRefGoogle Scholar
  6. Girosi L, Ramonio P, Diaspro A, Gallus L, Ciarcia G, Tagliafierro G (2005) FMRFamide-like immunoreactivity in the sea-fan Eunicella cavolini (Cnidaria: Octocorallia). Cell Tissue Res 320:331–336PubMedCrossRefGoogle Scholar
  7. Grimmelikhuijzen CJP (1983) FMRFamide immunoreactivity is generally occurring in the nervous system of coelenterates. Histochemistry 78:361–381PubMedCrossRefGoogle Scholar
  8. Grimmelikhuijzen CJP (1985) Antisera to the sequence arg-phe-amide visualize neuronal centralization in hydroid polyps. Cell Tissue Res 241:171–182CrossRefGoogle Scholar
  9. Grimmelikhuijzen CJP, Spencer AN (1984) FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J Comp Neurol 230:361–371PubMedCrossRefGoogle Scholar
  10. Grimmelikhuijzen CJP, Westfall JA (1995) The nervous system of cnidarians. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary approach. Birkhäuser, Basel, pp 7–24Google Scholar
  11. Grimmelikhuijzen CJP, Graff D, McFarlane ID (1989) Neurons and neuropeptides in coelenterates. Arch Histol Cytol 52:265–276PubMedGoogle Scholar
  12. Hamner WM, Jones MS, Hamner PP (1995) Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria, Cubozoa). Mar Freshwater Res 46:985–990CrossRefGoogle Scholar
  13. Hartwick RF (1991) Observations on the anatomy, behaviour, reproduction and life cycle of the cubozoan Carybdea sivickisi. Hydrobiologia 216/217:171–179CrossRefGoogle Scholar
  14. Hertwig O, Hertwig R (1878) Das Nervensystem und die Sinnesorgane der Medusen. Universität Jena, FeraGoogle Scholar
  15. Horridge GA, Chapman DM, Mackay B (1962) Naked axons and symmetrical synapses in an elementary nervous system. Nature 193:899–900PubMedCrossRefGoogle Scholar
  16. Kerfoot PAH, Mackie GO, Meech RW, Roberts A, Singla CL (1985) Neuromuscular transmission in the jellyfish Aglantha digitale. J Exp Biol 116:1–25PubMedGoogle Scholar
  17. Koizumi O, Itazawa M, Mizomoto H, Minobe S, Javois LC, Grimmelikhuijzen CJP, Bode HR (1992) Nerve ring in the hypostoem in Hydra. I. Its structure, development, and maintenance. J Comp Neurol 326:7–21PubMedCrossRefGoogle Scholar
  18. Koizumi O, Sato N, Goto C (2004) Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review. Hydrobiologia 530/531:41–47CrossRefGoogle Scholar
  19. Laska G, Hündgen M (1982) Morphologie und Ultrastruktur der Lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108:107–123Google Scholar
  20. Laska G, Hündgen M (1984) Die Ultrastruktur des neuromuskuläres Systems der Medusen von Tripedalia cystophora und Carybdea marsupialis (Coelenterata, Cubozoa). Zoomorphology 104:163–170CrossRefGoogle Scholar
  21. Lesh-Laurie GE, Suchy PE (1991) Scyphozoa and Cubozoa. In: Harrison FW, Westfall JA (eds) Placozoa, Porifera, Cnidaria, and Ctenophora, vol II. Wiley-Liss, New York, pp 185–266Google Scholar
  22. Lewis C, Long TAF (2005) Courtship and reproduction in Carybdea sivickisi (Cnidaria: Cubozoa). Mar Biol 147:477–483CrossRefGoogle Scholar
  23. Mackie GO (2004) Central neural circuitry in the jellyfish Aglantha: a model “simple nervous system”. NeuroSignals 13:5–19PubMedCrossRefGoogle Scholar
  24. Mackie GO, Meech RW (1995a) Central circuitry in the jellyfish Aglantha digitale. I. The relay system. J Exp Biol 198:2261–2270PubMedGoogle Scholar
  25. Mackie GO, Meech RW (1995b) Central circuitry in the jellyfish Aglantha digitale. II. The ring giant and carrier systems. J Exp Biol 198:2271–2278PubMedGoogle Scholar
  26. Mackie GO, Meech RW (2000) Central circuitry in the jellyfish Aglantha digitale. III. The rootlet and pacemaker systems. J Exp Biol 203:1797–1807PubMedGoogle Scholar
  27. Mackie GO, Anderson PAV, Singla CL (1984) Apparent absence of gap junctions in two classes of Cnidaria. Biol Bull 167:120–123CrossRefGoogle Scholar
  28. Mackie GO, Singla CL, Stell WK (1985) Distribution of nerve elements showing FMRFamide-like immunoreactivity in hydromedusae. Acta Zool 66:199–200CrossRefGoogle Scholar
  29. Matsumoto GI (1995) Observations on the anatomy and behaviour of the cubozoan Carybdea rastonii Haacke. Mar Freshwater Behav Physiol 26:139–148CrossRefGoogle Scholar
  30. Nilsson DE, Coates MM, Gislén l, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205PubMedCrossRefGoogle Scholar
  31. Parkefelt L, Nilsson DE, Ekström P (2005) A bilaterally symmetric nervous sytem in the rhopalia of a radially symmetric cubomedusa. J Comp Neurol 492:251–262PubMedCrossRefGoogle Scholar
  32. Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfish Carybdea rastonii. J Comp Physiol [A] 133:357–367CrossRefGoogle Scholar
  33. Satterlie RA (2002) Neural control of swimming in jellyfish: a comparative story. Can J Zool 80:1654–1669CrossRefGoogle Scholar
  34. Satterlie RA, Spencer AN (1979) Swimming control in a cubomedusan jellyfish. Nature 231:141–142CrossRefGoogle Scholar
  35. Satterlie RA, Thomas KS, Gray GC (2005) Muscle organization of the Cubozoan jellyfish Tripedalia cystophora Conant 1897. Biol Bull 209:154–163PubMedCrossRefGoogle Scholar
  36. Singla CL (1974) Ocelli of hydromedusae. Cell Tissue Res 149:413–429PubMedCrossRefGoogle Scholar
  37. Singla CL, Weber C (1982) Fine structure of the ocelli of Polyorchis penicillatus (Hydrozoa: Anthomedusae) and their connection with the nerve ring. Zoomorphology 99:117–129CrossRefGoogle Scholar
  38. Skogh C, Garm A, Nilsson DE, Ekström P (2006) Bilaterally symmetric rhopalial nervous system of box jellyfish (Tripedalia cystophora). J Morphol 267:1391–1405PubMedCrossRefGoogle Scholar
  39. Spencer AN, Satterlie RA (1980) Electrical and dye coupling in an identified group of neurons in a coelanterate. J Neurobiol 11:13–19PubMedCrossRefGoogle Scholar
  40. Spencer AN, Arkett SA (1984) Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J Exp Biol 110:69–90Google Scholar
  41. Weber C, Singla CL, Kerfoot PAH (1982) Microanatomy of the subumbrellar motor innervation in Aglantha digitale (Hydromedusae: Trachylina). Cell Tissue Res 223:305–312PubMedCrossRefGoogle Scholar
  42. Yamamoto M, Yoshida M (1980) Fine structure of ocelli of an anthomedusan, Nemiopsis dofleini, with special reference to synaptic organization. Zoomorphology 96:169–181CrossRefGoogle Scholar
  43. Yi-Chan JL, Gallin WJ, Spencer AN (2001) The anatomy of the nervous system of the hydrozoan jellyfish, Polyorchis penicillatus, as revealed by a monoclonal antibody. Invertebr Neurosci 4:65–75Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Garm
    • 1
  • Y. Poussart
    • 2
  • L. Parkefelt
    • 1
  • P. Ekström
    • 1
  • D-E. Nilsson
    • 1
  1. 1.Department of Cell and Organism BiologyLund UniversityLundSweden
  2. 2.Département de BiologieUniversité de MonctonMonctonCanada

Personalised recommendations