Cell and Tissue Research

, Volume 328, Issue 2, pp 317–328 | Cite as

Basement membrane protein distribution in LYVE-1-immunoreactive lymphatic vessels of normal tissues and ovarian carcinomas

  • Noora Vainionpää
  • Ralf Bützow
  • Mika Hukkanen
  • David G. Jackson
  • Taina Pihlajaniemi
  • Lynn Y. Sakai
  • Ismo Virtanen
Regular Article

Abstract

The endothelial cells of blood vessels assemble basement membranes that play a role in vessel formation, maintenance and function, and in the migration of inflammatory cells. However, little is known about the distribution of basement membrane constituents in lymphatic vessels. We studied the distribution of basement membrane proteins in lymphatic vessels of normal human skin, digestive tract, ovary and, as an example of tumours with abundant lymphatics, ovarian carcinomas. Basement membrane proteins were localized by immunohistochemistry with monoclonal antibodies, whereas lymphatic capillaries were detected with antibodies to the lymphatic vessel endothelial hyaluronan receptor-1, LYVE-1. In skin and ovary, fibrillar immunoreactivity for the laminin α4, β1, β2 and γ1 chains, type IV and XVIII collagens and nidogen-1 was found in the basement membrane region of the lymphatic endothelium, whereas also heterogeneous reactivity for the laminin α5 chain was detected in the digestive tract. Among ovarian carcinomas, intratumoural lymphatic vessels were found especially in endometrioid carcinomas. In addition to the laminin α4, β1, β2 and γ1 chains, type IV and XVIII collagens and nidogen-1, carcinoma lymphatics showed immunoreactivity for the laminin α5 chain and Lutheran glycoprotein, a receptor for the laminin α5 chain. In normal lymphatic capillaries, the presence of primarily α4 chain laminins may therefore compromise the formation of endothelial basement membrane, as these truncated laminins lack one of the three arms required for efficient network assembly. The localization of basement membrane proteins adjacent to lymphatic endothelia suggests a role for these proteins in lymphatic vessels. The distribution of the laminin α5 chain and Lutheran glycoprotein proposes a difference between normal and carcinoma lymphatic capillaries.

Keywords

Basement membrane Lymphatic vessel Endothelium Laminin Ovarian carcinoma Human 

Notes

Acknowledgements

MAb M3F7 raised by Foellmer et al. (1983) was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. We thank Profs. K. Alitalo, E. Engvall, D. Kerjaschki, J.H. Miner, K. Miyazaki, P. Rousselle and U. Wewer for antibodies. For technical assistance, we acknowledge Ms. Pipsa Kaipainen, Mr. Hannu Kamppinen, Mr. Reijo Karppinen, Ms. Marja-Leena Piironen, Ms. Outi Rauanheimo, Ms. Anne Reijula and Ms. Hanna Wennäkoski.

References

  1. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, Mark K von der, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  2. Ayhan A, Gultekin M, Taskiran C, Celik NY, Usubutun A, Kucukali T, Yuce K (2005) Lymphatic metastasis in epithelial ovarian carcinoma with respect to clinicopathological variables. Gynecol Oncol 97:400–404PubMedCrossRefGoogle Scholar
  3. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801PubMedCrossRefGoogle Scholar
  4. Barsky SH, Baker A, Siegal GP, Togo S, Liotta LA (1983) Use of anti-basement membrane antibodies to distinguish blood vessel capillaries from lymphatic capillaries. Am J Surg Pathol 7:667–677PubMedCrossRefGoogle Scholar
  5. Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154:385–394PubMedGoogle Scholar
  6. Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5:735–743PubMedCrossRefGoogle Scholar
  7. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107PubMedCrossRefGoogle Scholar
  8. DeHahn KC, Gonzales M, Gonzales AM, Hopkinson SB, Chandel NS, Brunell JK, Jones JCR (2004) The α4 laminin subunit regulates endothelial cell survival. Exp Cell Res 294:281–289PubMedCrossRefGoogle Scholar
  9. Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F (1991) Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 6:269–286PubMedGoogle Scholar
  10. Doi M, Thyboll J, Kortesmaa J, Jansson K, Iivanainen A, Parvardeh M, Timpl R, Hedin U, Swedenborg J, Tryggvason K (2002) Recombinant human laminin-10 (α5β1γ1). Production, purification, and migration-promoting activity on vascular endothelial cells. J Biol Chem 277:12741–12748PubMedCrossRefGoogle Scholar
  11. El Nemer W, Gane P, Colin Y, Bony V, Rahuel C, Galacteros F, Cartron JP, Le Van Kim C (1998) The Lutheran blood group glycoproteins, the erythroid receptors for laminin, are adhesion molecules. J Biol Chem 273:16686–16693PubMedCrossRefGoogle Scholar
  12. Engvall E, Davis GE, Dickerson K, Ruoslahti E, Varon S, Manthorpe M (1986) Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J Cell Biol 103:2457–2465PubMedCrossRefGoogle Scholar
  13. Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48:1291–1306PubMedGoogle Scholar
  14. Foellmer HG, Madri JA, Furthmayr H (1983) Methods in laboratory investigation. Monoclonal antibodies to type IV collagen: probes for the study of structure and function of basement membranes. Lab Invest 48:639–649PubMedGoogle Scholar
  15. Geberhiwot T, Assefa D, Kortesmaa J, Ingerpuu S, Pedraza C, Wondimu Z, Charo J, Kiessling R, Virtanen I, Tryggvason K, Patarroyo M (2001) Laminin-8 (α4β1γ1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation. J Cell Sci 114:423–433PubMedGoogle Scholar
  16. Gnepp DR (1987) Vascular endothelial markers of the human thoracic duct and lacteal. Lymphology 20:36–43PubMedGoogle Scholar
  17. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000PubMedCrossRefGoogle Scholar
  18. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586Google Scholar
  19. Holthöfer H, Virtanen I, Kariniemi AL, Hormia M, Linder E, Miettinen A (1982) Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 47:60–66PubMedGoogle Scholar
  20. Jackson DG (2003) The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med 13:1–7PubMedCrossRefGoogle Scholar
  21. Ji RC (2006) Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. Lymphat Res Biol 4:83–100PubMedCrossRefGoogle Scholar
  22. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433PubMedCrossRefGoogle Scholar
  23. Katz A, Fish AJ, Kleppel MM, Hagen SG, Michael AF, Butkowski RJ (1991) Renal entactin (nidogen): isolation, characterization and tissue distribution. Kidney Int 40:643–652PubMedGoogle Scholar
  24. Khazenzon NM, Ljubimov AV, Lakhter AJ, Fujita M, Fujiwara H, Sekiguchi K, Sorokin LM, Petäjäniemi N, Virtanen I, Black KL, Ljubimova JY (2003) Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther 2:985–994PubMedGoogle Scholar
  25. Kikkawa Y, Miner JH (2005) Review: Lutheran/B-CAM: a laminin receptor on red blood cells and in various tissues. Connect Tissue Res 46:193–199PubMedCrossRefGoogle Scholar
  26. Leak LV, Burke JF (1966) Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 118:785–809PubMedCrossRefGoogle Scholar
  27. Leivo I, Engvall E (1988) Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development. Proc Natl Acad Sci USA 85:1544–1548PubMedCrossRefGoogle Scholar
  28. Määttä M, Virtanen I, Burgeson R, Autio-Harmainen H (2001) Comparative analysis of the distribution of laminin chains in the basement membranes in some malignant epithelial tumours: the alpha1 chain of laminin shows a selected expression pattern in human carcinomas. J Histochem Cytochem 49:711–726PubMedGoogle Scholar
  29. Marinkovich MP, Lunstrum GP, Burgeson RE (1992) The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J Biol Chem 267:17900–17906PubMedGoogle Scholar
  30. Meyer D, Zimmerman TS, Obert B, Edgington TS (1984) Hybridoma antibodies to human von Willebrand factor. I. Characterization of seven clones. Br J Haematol 57:597–608PubMedGoogle Scholar
  31. Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 143:1713–1723PubMedCrossRefGoogle Scholar
  32. Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217:278–289PubMedCrossRefGoogle Scholar
  33. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284PubMedCrossRefGoogle Scholar
  34. Mizushima H, Koshikawa N, Moriyama K, Takamura H, Nagashima Y, Hirahara F, Miyazaki K (1998) Wide distribution of laminin-5 gamma 2 chain in basement membranes of various human tissues. Horm Res 50 (Suppl 2):7–14PubMedCrossRefGoogle Scholar
  35. Moulson CL, Li C, Miner JH (2001) Localization of Lutheran, a novel laminin receptor, in normal, knockout, and transgenic mice suggests an interaction with laminin alpha5 in vivo. Dev Dyn 222:101–114PubMedCrossRefGoogle Scholar
  36. Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483PubMedCrossRefGoogle Scholar
  37. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285PubMedCrossRefGoogle Scholar
  38. Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115:4201–4214PubMedCrossRefGoogle Scholar
  39. Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207PubMedCrossRefGoogle Scholar
  40. Pepper MS, Skobe M (2003) Lymphatic endothelium: morphological, molecular and functional properties. J Cell Biol 163:209–213PubMedCrossRefGoogle Scholar
  41. Petäjäniemi N, Korhonen M, Kortesmaa J, Tryggvason K, Sekiguchi K, Fujiwara H, Sorokin L, Thornell LE, Wondimu Z, Assefa D, Patarroyo M, Virtanen I (2002) Localization of laminin alpha4-chain in developing and adult human tissues. J Histochem Cytochem 50:1113–1130PubMedGoogle Scholar
  42. Petrova TV, Mäkinen T, Mäkela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Ylä-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21:4593–4599PubMedCrossRefGoogle Scholar
  43. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99:16069–16074PubMedCrossRefGoogle Scholar
  44. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628PubMedCrossRefGoogle Scholar
  45. Rousselle P, Lunstrum GP, Keene DR, Burgeson RE (1991) Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 114:567–576PubMedCrossRefGoogle Scholar
  46. Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol 153:611–626PubMedGoogle Scholar
  47. Sakai LY, Keene DR, Morris NP, Burgeson RE (1986a) Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol 103:1577–1586PubMedCrossRefGoogle Scholar
  48. Sakai LY, Keene DR, Engvall E (1986b) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509PubMedCrossRefGoogle Scholar
  49. Sauter B, Foedinger D, Sterniczky B, Wolff K, Rappersberger K (1998) Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells: differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 46:165–176PubMedGoogle Scholar
  50. Schmid-Schönbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70:987–1028PubMedGoogle Scholar
  51. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153:933–945PubMedCrossRefGoogle Scholar
  52. Sleeman JP, Krishnan J, Kirkin V, Baumann P (2001) Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 55:61–69PubMedCrossRefGoogle Scholar
  53. Solito R, Alessandrini C, Fruschelli M, Pucci AM, Gerli R (1997) An immunological correlation between the anchoring filaments of initial lymph vessels and the neighboring elastic fibers: a unified morphofunctional concept. Lymphology 30:194–202PubMedGoogle Scholar
  54. Tani T, Ylänne J, Virtanen I (1996) Expression of megakaryocytic and erythroid properties in human leukemic cells. Exp Hematol 24:158–168PubMedGoogle Scholar
  55. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol Cell Biol 22:1194–1202PubMedCrossRefGoogle Scholar
  56. Tiger CF, Champliaud MF, Pedrosa-Domellöf F, Thornell L-E, Ekblom P, Gullberg D (1997) Presence of laminin α5 chain and lack of laminin α1 chain during human muscle development and in muscular dystrophies. J Biol Chem 272:28590–28595PubMedCrossRefGoogle Scholar
  57. Titz B, Dietrich S, Sadowski T, Beck C, Petersen A, Sedlacek R (2004) Activity of MMP-19 inhibits capillary-like formation due to processing of nidogen-. Cell Mol Life Sci 61:1826–1833PubMedCrossRefGoogle Scholar
  58. Ueda M, Hung YC, Terai Y, Kanda K, Kanemura M, Futakuchi H, Yamaguchi H, Akise D, Yasuda M, Ueki M (2005) Vascular endothelial growth factor-C expression and invasive phenotype in ovarian carcinomas. Clin Cancer Res 11:3225–3232PubMedCrossRefGoogle Scholar
  59. Vainionpää N, Kikkawa Y, Lounatmaa K, Miner JH, Rousselle P, Virtanen I (2006) Laminin-10 and Lutheran blood group glycoproteins in the adhesion of human endothelial cells. Am J Physiol Cell Physiol 290:764–775CrossRefGoogle Scholar
  60. Valtola R, Salven P, Heikkilä P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K (1999) VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 154:1381–1390PubMedGoogle Scholar
  61. Virtanen I, Lohi J, Tani T, Korhonen M, Burgeson RE, Lehto VP, Leivo I (1997) Distinct changes in the laminin composition of basement membranes in human seminiferous tubules during development and degeneration. Am J Pathol 150:1421–1431PubMedGoogle Scholar
  62. Virtanen I, Gullberg D, Rissanen J, Kivilaakso E, Kiviluoto T, Laitinen LA, Lehto VP, Ekblom P (2000) Laminin alpha1-chain shows a restricted distribution in epithelial basement membranes of fetal and adult human tissues. Exp Cell Res 257:298–309PubMedCrossRefGoogle Scholar
  63. Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L, Nourshargh S (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203:1519–1532PubMedCrossRefGoogle Scholar
  64. Wewer UM, Thornell LE, Loechel F, Zhang X, Durkin ME, Amano S, Burgeson RE, Engvall E, Albrechtsen R, Virtanen I (1997) Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle. Am J Pathol 151:621–631PubMedGoogle Scholar
  65. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513PubMedCrossRefGoogle Scholar
  66. Wilting J, Hawighorst MH, Hecht M, Christ B, Papoutsi M (2005) Development of lymphatic vessels: tumour lymhangiogenesis and lymphatic invasion. Curr Med Chem 12:2663–2681CrossRefGoogle Scholar
  67. Yokoyama Y, Charnock-Jones DS, Licence D, Yanaihara A, Hastings JM, Holland CM, Emoto M, Umemoto M, Sakamoto T, Sato S, Mizunuma H, Smith SK (2003) Vascular endothelial growth factor-D is an independent prognostic factor in epithelial ovarian carcinoma. Br J Cancer 88:237–244PubMedCrossRefGoogle Scholar
  68. Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 22:521–538PubMedCrossRefGoogle Scholar
  69. Zawieja D (2005) Lymphatic biology and the microcirculation: past, present and future. Microcirculation 12:141–150PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Noora Vainionpää
    • 1
  • Ralf Bützow
    • 2
    • 6
  • Mika Hukkanen
    • 1
  • David G. Jackson
    • 3
  • Taina Pihlajaniemi
    • 4
  • Lynn Y. Sakai
    • 5
  • Ismo Virtanen
    • 1
  1. 1.Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of PathologyHaartman Institute University of HelsinkiHelsinkiFinland
  3. 3.MRC Human Immunology UnitInstitute of Molecular Medicine, John Radcliffe HospitalOxfordUK
  4. 4.Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, Collagen Research UnitUniversity of OuluOuluFinland
  5. 5.Department of Biochemistry and Molecular Biology, Shriners Hospital for ChildrenOregon Health and Science UniversityPortlandUSA
  6. 6.Department of Obstetrics and Gynecology, Research Laboratory, BiomedicumHelsinki University Central HospitalHelsinkiFinland

Personalised recommendations