Cell and Tissue Research

, Volume 328, Issue 1, pp 1–5 | Cite as

Bone marrow as a source of stem cells and germ cells? Perspectives for transplantation



Recent publications have suggested the existence of germ stem cells in the mouse at postnatal stages. The mechanism of de novo oocyte formation is proposed to involve a contribution from the bone marrow to the germ cell pool, via the bloodstream. Critical examination of the data underpinning these contentious claims is under way from a reproductive biology perspective but little has been said about the nature of this elusive bone marrow population with germ cell potential. Furthermore, whereas the prospect of marrow-derived germ cells may appear propitious for fertility applications, its wider impact on transplantation medicine remains to be considered. This paper examines the evidence leading to the current debate and considers the implications of such findings for the field of bone marrow transplantation.


Bone marrow Stem cell Transplantation Germ cell Ethics Human Mouse 


  1. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973PubMedCrossRefGoogle Scholar
  2. Anjos-Afonso F, Siapati EK, Bonnet D (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117:5655–5664PubMedCrossRefGoogle Scholar
  3. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249PubMedCrossRefGoogle Scholar
  4. Bukovsky A (2005) Can ovarian infertility be treated with bone marrow- or ovary-derived germ cells? Reprod Biol Endocrinol 3:36PubMedCrossRefGoogle Scholar
  5. Bukovsky A, Keenan JA, Caudle MR, Wimalasena J, Upadhyaya NB, Van Meter SE (1995) Immunohistochemical studies of the adult human ovary: possible contribution of immune and epithelial factors to folliculogenesis. Am J Reprod Immunol 33:323–340PubMedGoogle Scholar
  6. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB (2004) Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol 2:20PubMedCrossRefGoogle Scholar
  7. Byskov AG, Faddy MJ, Lemmen JG, Andersen CY (2005) Eggs forever? Differentiation 73:438–446PubMedCrossRefGoogle Scholar
  8. Couzin J (2004) Reproductive biology. Textbook rewrite? Adult mammals may produce eggs after all. Science 303:1593PubMedCrossRefGoogle Scholar
  9. Daar AS, Sheremeta L (2003) The science of stem cells: ethical, legal and social issues. Exp Clin Transplant 1:139–146PubMedGoogle Scholar
  10. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064PubMedCrossRefGoogle Scholar
  11. Dyce PW, Wen L, Li J (2006) In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 8:384–390PubMedCrossRefGoogle Scholar
  12. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ (2006) Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 441:1109–1114PubMedCrossRefGoogle Scholar
  13. Falciatori I, Borsellino G, Haliassos N, Boitani C, Corallini S, Battistini L, Bernardi G, Stefanini M, Vicini E (2004) Identification and enrichment of spermatogonial stem cells displaying side-population phenotype in immature mouse testis. FASEB J 18:376–378PubMedGoogle Scholar
  14. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedCrossRefGoogle Scholar
  15. Gosden RG (2004) Germline stem cells in the postnatal ovary: is the ovary more like a testis? Hum Reprod Update 10:193–195PubMedCrossRefGoogle Scholar
  16. Gosden RG, Laing SC, Felicio LS, Nelson JF, Finch CE (1983) Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biol Reprod 28:255–260PubMedCrossRefGoogle Scholar
  17. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422PubMedCrossRefGoogle Scholar
  18. Hirschi KK, Goodell MA (2002) Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9:648–652PubMedCrossRefGoogle Scholar
  19. Hutt KJ, Albertini DF (2006) Clinical applications and limitations of current ovarian stem cell research: a review. J Exp Clin Assist Reprod 3:6PubMedCrossRefGoogle Scholar
  20. Hutt KJ, McLaughlin EA, Holland MK (2006) KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod 75:421–433PubMedCrossRefGoogle Scholar
  21. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  22. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL (2004) Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428:145–150PubMedCrossRefGoogle Scholar
  23. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315PubMedCrossRefGoogle Scholar
  24. Kayisli UA, Seli E (2006) Stem cells and fertility: what does the future hold? Curr Opin Obstet Gynecol 18:338–343PubMedCrossRefGoogle Scholar
  25. Kerr JB, Duckett R, Myers M, Britt KL, Mladenovska T, Findlay JK (2006) Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction 132:95–109PubMedCrossRefGoogle Scholar
  26. Lassalle B, Bastos H, Louis JP, Riou L, Testart J, Dutrillaux B, Fouchet P, Allemand I (2004) “Side population” cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131:479–487PubMedCrossRefGoogle Scholar
  27. Manova K, Nocka K, Besmer P, Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069PubMedGoogle Scholar
  28. McClellan KA, Gosden R, Taketo T (2003) Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary. Dev Biol 258:334–348PubMedCrossRefGoogle Scholar
  29. McKinstry WJ, Li CL, Rasko JE, Nicola NA, Johnson GR, Metcalf D (1997) Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 89:65–71PubMedGoogle Scholar
  30. McLaren A (2001) Ethical and social considerations of stem cell research. Nature 414:129–131PubMedCrossRefGoogle Scholar
  31. McLaren A, Durcova-Hills G (2001) Germ cells and pluripotent stem cells in the mouse. Reprod Fertil Dev 13:661–664PubMedCrossRefGoogle Scholar
  32. Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711PubMedCrossRefGoogle Scholar
  33. Morita Y, Ema H, Yamazaki S, Nakauchi H (2006) Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 108:2850–2856PubMedCrossRefGoogle Scholar
  34. Muguruma Y, Lee MY (1998) Isolation and characterization of murine clonogenic osteoclast progenitors by cell surface phenotype analysis. Blood 91:1272–1279PubMedGoogle Scholar
  35. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86:654–663PubMedCrossRefGoogle Scholar
  36. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Nishikawa S, Miura Y, Suda T (1991) Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 78:1706–1712PubMedGoogle Scholar
  37. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050PubMedGoogle Scholar
  38. Oulad-Abdelghani M, Bouillet P, Decimo D, Gansmuller A, Heyberger S, Dolle P, Bronner S, Lutz Y, Chambon P (1996) Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol 135:469–477PubMedCrossRefGoogle Scholar
  39. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM (2005) Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 279:336–344PubMedCrossRefGoogle Scholar
  40. Pearce DJ, Ridler CM, Simpson C, Bonnet D (2004) Multiparameter analysis of murine bone marrow side population cells. Blood 103:2541–2546PubMedCrossRefGoogle Scholar
  41. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  42. Powell K (2006) Born or made? Debate on mouse eggs reignites. Nature 441:795PubMedCrossRefGoogle Scholar
  43. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386PubMedCrossRefGoogle Scholar
  44. Rich IN (1995) Primordial germ cells are capable of producing cells of the hematopoietic system in vitro. Blood 86:463–472PubMedGoogle Scholar
  45. Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597PubMedCrossRefGoogle Scholar
  46. Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300PubMedCrossRefGoogle Scholar
  47. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62PubMedCrossRefGoogle Scholar
  48. Telfer EE, Gosden RG, Byskov AG, Spears N, Albertini D, Andersen CY, Anderson R, Braw-Tal R, Clarke H, Gougeon A, McLaughlin E, McLaren A, McNatty K, Schatten G, Silber S, Tsafriri A (2005) On regenerating the ovary and generating controversy. Cell 122:821–822PubMedCrossRefGoogle Scholar
  49. Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5:959–966PubMedCrossRefGoogle Scholar
  50. Zhang Y, Harada A, Bluethmann H, Wang JB, Nakao S, Mukaida N, Matsushima K (1995) Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 86:2930–2937PubMedGoogle Scholar
  51. Zhang S, Jia Z, Ge J, Gong L, Ma Y, Li T, Guo J, Chen P, Hu Q, Zhang P, Liu Y, Li Z, Ma K, Li L, Zhou C (2005) Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental rats. Cell Transplant 14:787–798PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Genetics, Medical SchoolUniversity of NottinghamNottinghamUK

Personalised recommendations