Cell and Tissue Research

, Volume 328, Issue 1, pp 31–47 | Cite as

Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine

  • Mareike Florek
  • Nicola Bauer
  • Peggy Janich
  • Michaela Wilsch-Braeuninger
  • Christine A. Fargeas
  • Anne-Marie Marzesco
  • Gerhard Ehninger
  • Christoph Thiele
  • Wieland B. Huttner
  • Denis Corbeil
Regular Article

Abstract

Prominin-2 is a pentaspan membrane glycoprotein structurally related to the cholesterol-binding protein prominin-1, which is expressed in epithelial and non-epithelial cells. Although prominin-1 expression is widespread throughout the organism, the loss of its function solely causes retinal degeneration. The finding that prominin-2 appears to be restricted to epithelial cells, such as those found in kidney tubules, raises the possibility that prominin-2 functionally substitutes prominin-1 in tissues other than the retina and provokes a search for a definition of its morphological and biochemical characteristics. Here, we have investigated, by using MDCK cells as an epithelial cell model, whether prominin-2 shares the biochemical and morphological properties of prominin-1. Interestingly, we have found that, whereas prominin-2 is not restricted to the apical domain like prominin-1 but is distributed in a non-polarized fashion between the apical and basolateral plasma membranes, it retains the main feature of prominin-1, i.e. its selective concentration in plasmalemmal protrusions; prominin-2 is confined to microvilli, cilia and other acetylated tubulin-positive protruding structures. Similar to prominin-1, prominin-2 is partly associated with detergent-resistant membranes in a cholesterol-dependent manner, suggesting its incorporation into membrane microdomains, and binds directly to plasma membrane cholesterol. Finally, prominin-2 is also associated with small membrane particles that are released into the culture media and found in a physiological fluid, i.e. urine. Together, these data show that all the characteristics of prominin-1 are shared by prominin-2, which is in agreement with a possible redundancy in their role as potential organizers of plasma membrane protrusions.

Keywords

Prominin-1 (CD133) Lipid raft Microvillus Prominosome MDCK cells Mouse (C57B16) 

References

  1. Am Esch JS, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, Burchardt ER, Feifel N, Stoldt V, Stockschlader M, Stoecklein N, Tustas RY, Eisenberger CF, Peiper M, Haussinger D, Hosch SB (2005) Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 23:463–470CrossRefGoogle Scholar
  2. Bitan M, Shapira M, Resnick I, Zilberman I, Miron S, Samuel S, Ackerstein A, Elad S, Israel S, Amar A, Fibach E, Or R, Slavin S (2005) Successful transplantation of haploidentically mismatched peripheral blood stem cells using CD133(+)-purified stem cells. Exp Hematol 33:713–718PubMedCrossRefGoogle Scholar
  3. Bornhäuser M, Eger L, Oelschlaegel U, Auffermann-Gretzinger S, Kiani A, Schetelig J, Illmer T, Schaich M, Corbeil D, Thiede C, Ehninger G (2005) Rapid reconstitution of dendritic cells after allogeneic transplantation of CD133+ selected hematopoietic stem cells. Leukemia 19:161–165PubMedGoogle Scholar
  4. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus M, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555PubMedGoogle Scholar
  5. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5PubMedCrossRefGoogle Scholar
  6. Corbeil D, Boileau G, Lemay G, Crine P (1992) Expression and polarized apical secretion in Madin-Darby canine kidney cells of a recombinant soluble form of neutral endopeptidase lacking the cytosolic and transmembrane domains. J Biol Chem 267:2798–2801PubMedGoogle Scholar
  7. Corbeil D, Röper K, Hannah MJ, Hellwig A, Huttner WB (1999) Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells—a combination of apical sorting and retention in plasma membrane protrusions. J Cell Sci 112:1023–1033PubMedGoogle Scholar
  8. Corbeil D, Röper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520PubMedCrossRefGoogle Scholar
  9. Corbeil D, Fargeas CA, Huttner WB (2001a) Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun 285:939–944PubMedCrossRefGoogle Scholar
  10. Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001b) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91PubMedCrossRefGoogle Scholar
  11. Danielsen EM, Hansen GH (2003) Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochem Biophys Acta 1617:1–9PubMedGoogle Scholar
  12. Drobnik W, Borsukova H, Bottcher A, Pfeiffer A, Liebisch G, Schutz GJ, Schindler H, Schmitz G (2002) Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 3:268–278PubMedCrossRefGoogle Scholar
  13. Fargeas CA, Corbeil D, Huttner WB (2003a) AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 21:506–508PubMedCrossRefGoogle Scholar
  14. Fargeas CA, Florek M, Huttner WB, Corbeil D (2003b) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596PubMedCrossRefGoogle Scholar
  15. Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB, Corbeil D (2004) Identification of novel prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci 117:4301–4311PubMedCrossRefGoogle Scholar
  16. Fargeas CA, Fonseca AV, Huttner WB, Corbeil D (2006) Prominin-1 (CD133): from progenitor cells to human diseases. Future Lipidol 1:213–225CrossRefGoogle Scholar
  17. Fiedler K, Kobayashi T, Kurzchalia TV, Simons K (1993) Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:6365–6373PubMedCrossRefGoogle Scholar
  18. Giebel B, Corbeil D, Beckmann J, Höhn J, Freund D, Giesen K, Fischer J, Kögler G, Wernet P (2004) Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 104:2332–2338PubMedCrossRefGoogle Scholar
  19. Gut A, Kappeler F, Hyka N, Balda MS, Hauri HP, Matter K (1998) Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J 17:1919–1929PubMedCrossRefGoogle Scholar
  20. Huttner WB, Zimmerberg J (2001) Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13:478–484PubMedCrossRefGoogle Scholar
  21. Jászai J, Fargeas CA, Florek M, Huttner WB, Corbeil D (2006) Prominin-1 (CD133). Exp Eye Res [Epub ahead of print; PMID: 16733052]Google Scholar
  22. Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, Boheler KR, Wobus AM (2005) The somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 23:791–804PubMedCrossRefGoogle Scholar
  23. Klein U, Gimpl G, Fahrenholz F (1995) Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34:13784–13793PubMedCrossRefGoogle Scholar
  24. Kuerschner L, Ejsing CS, Ekroos K, Shevchenko A, Anderson KI, Thiele C (2005) Polyene-lipids: a new tool to image lipids. Nat Methods 2:39–45PubMedCrossRefGoogle Scholar
  25. Larsen JE, Avvakumov GV, Hammond GL, Vogel LK (1999) N-glycans are not the signal for apical sorting of corticosteroid binding globulin in MDCK cells. FEBS Lett 451:19–22PubMedCrossRefGoogle Scholar
  26. Lee A, Kessler JD, Read T-A, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from postnatal cerebellum. Nat Neurosci 8:723–729PubMedCrossRefGoogle Scholar
  27. London E, Brown DA (2000) Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochem Biophys Acta 1508:182–195PubMedGoogle Scholar
  28. Lucero HA, Robbins PW (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 426:208–224PubMedCrossRefGoogle Scholar
  29. Marzesco AM, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–58PubMedCrossRefGoogle Scholar
  30. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Röper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34PubMedCrossRefGoogle Scholar
  31. Melkonian KA, Chu T, Tortorella LB, Brown DA (1995) Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells. Biochemistry 34:16167–16170CrossRefGoogle Scholar
  32. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021PubMedGoogle Scholar
  33. Oh H, Missol-Kolka E, Moons L, Wilsch-Bräuninger M, Jansen S, Hudl K, Seeliger M, Collen D, Huttner WB, Corbeil D, Carmeliet P (2005) Prominin-1 deficiency leads to progressive retinal degeneration. ARVO 2005 Annual Meeting May 1–5, 2005, Fort Lauderdale, Florida, USA (abstract no. B421)Google Scholar
  34. Poole K, Meder D, Simons K, Muller D (2004) The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy. FEBS Lett 565:53–58PubMedCrossRefGoogle Scholar
  35. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545PubMedCrossRefGoogle Scholar
  36. Rodriguez-Boulan E, Gonzalez A (1999) Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol 9:291–294PubMedCrossRefGoogle Scholar
  37. Röper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592PubMedCrossRefGoogle Scholar
  38. Scheiffele P, Peranen J, Simons K (1995) N-glycans as apical sorting signals in epithelial cells. Nature 378:96–98PubMedCrossRefGoogle Scholar
  39. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membrane to different detergents. Proc Natl Acad Sci USA 100:5795–5800PubMedCrossRefGoogle Scholar
  40. Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol Chem 384:1259–1293PubMedCrossRefGoogle Scholar
  41. Slimane TA, Trugnan G, Van Ijzendoorn SC, Hoekstra D (2003) Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains. Mol Biol Cell 14:611–624PubMedCrossRefGoogle Scholar
  42. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2:42–49PubMedCrossRefGoogle Scholar
  43. Trischler M, Koch-Brandt C, Ullrich O (2001) Apical transport of osteopontin is independent of N-glycosylation and sialylation. Mol Membr Biol 18:275–281PubMedCrossRefGoogle Scholar
  44. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725PubMedCrossRefGoogle Scholar
  45. Urquhart P, Pang S, Hooper NM (2005) N-glycans as apical targeting signals in polarized epithelial cells. Biochem Soc Symp 72:39–45PubMedGoogle Scholar
  46. Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–25900PubMedCrossRefGoogle Scholar
  47. Vinson M, Rausch O, Maycox PR, Prinjha RK, Chapman D, Morrow R, Harper AJ, Dingwall C, Walsh FS, Burbidge SA, Riddell DR (2003) Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Mol Cell Neurosci 22:344–352PubMedCrossRefGoogle Scholar
  48. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430PubMedCrossRefGoogle Scholar
  49. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012PubMedGoogle Scholar
  50. Zhang Q, Haleem R, Cai X, Wang ZT (2002) Identification and characterization of a novel testosterone-regulated prominin-like gene in the rat ventral prostate. Endocrinology 143:4788–4796PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mareike Florek
    • 2
  • Nicola Bauer
    • 1
  • Peggy Janich
    • 1
  • Michaela Wilsch-Braeuninger
    • 3
  • Christine A. Fargeas
    • 1
  • Anne-Marie Marzesco
    • 3
  • Gerhard Ehninger
    • 2
  • Christoph Thiele
    • 3
  • Wieland B. Huttner
    • 3
  • Denis Corbeil
    • 1
  1. 1.Tissue Engineering Laboratories, BIOTECDresdenGermany
  2. 2.Medical Clinic and Polyclinic ITechnische Universität DresdenDresdenGermany
  3. 3.Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations