Advertisement

Cell and Tissue Research

, Volume 326, Issue 2, pp 541–551 | Cite as

Adrenoceptors and signal transduction in neurons

  • Lutz Hein
Review

Abstract

The adrenergic system is an essential regulator of neuronal, endocrine, cardiovascular, vegetative, and metabolic functions. The endogenous catecholamines epinephrine and norepinephrine activate G-protein-coupled receptors to transmit their signal across the plasma membrane. These adrenoceptors can be divided into three different groups: the α1-receptors (α1A, α1B, α1D), α2-receptors (α2A, α2B, α2C), and β-receptors (β1, β2, β3). This review summarizes recent findings in the field of adrenoceptor signaling in neurons and includes a discussion of receptor-associated proteins, receptor dimerization, subcellular trafficking, and fluorescence optical methods for studying the kinetics of adrenergic signaling. Spatio-temporal imaging may become an important future tool for identifying the physiological significance of these complex signaling mechanisms in vivo. Gene-targeted mouse models carrying deletions in α2-adrenoceptor have provided detailed insights into specific neuronal functions of the three α2-receptor subtypes.

Keywords

Adrenoceptors Epinephrine G-protein-coupled receptors Norepinephrine Transgenic mice 

References

  1. Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 60:183–190PubMedGoogle Scholar
  2. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600Google Scholar
  3. Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L (1999) Abnormal regulation of the sympathetic nervous system in α2A-adrenergic receptor knockout mice. Mol Pharmacol 56:154–161PubMedGoogle Scholar
  4. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97:3684–3689PubMedCrossRefGoogle Scholar
  5. Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435PubMedCrossRefGoogle Scholar
  6. Bjorklund M, Siverina I, Heikkinen T, Tanila H, Sallinen J, Scheinin M, Riekkinen P Jr (2001) Spatial working memory improvement by an α2-adrenoceptor agonist dexmedetomidine is not mediated through α2C-adrenoceptor. Prog Neuropsychopharmacol Biol Psychiatry 25:1539–1554PubMedCrossRefGoogle Scholar
  7. Brady AE, Wang Q, Allen PB, Rizzo M, Greengard P, Limbird LE (2005) α2-Adrenergic agonist enrichment of spinophilin at the cell surface involves βγ subunits of Gi proteins and is preferentially induced by the α2A-subtype. Mol Pharmacol 67:1690–1696PubMedCrossRefGoogle Scholar
  8. Brede M, Nagy G, Philipp M, Sorensen JB, Lohse MJ, Hein L (2003a) Differential control of adrenal and sympathetic catecholamine release by α2-adrenoceptor subtypes. Mol Endocrinol 17:1640–1646PubMedCrossRefGoogle Scholar
  9. Brede M, Roell W, Ritter O, Wiesmann F, Jahns R, Haase A, Fleischmann BK, Hein L (2003b) Cardiac hypertrophy is associated with decreased eNOS expression in angiotensin AT2 receptor-deficient mice. Hypertension 42:1177–1182PubMedCrossRefGoogle Scholar
  10. Brede M, Philipp M, Knaus A, Muthig V, Hein L (2004) α2-Adrenergic receptor subtypes—novel functions uncovered in gene-targeted mouse models. Biol Cell 96:343–348PubMedCrossRefGoogle Scholar
  11. Breit A, Lagace M, Bouvier M (2004) Hetero-oligomerization between β2- and β3-adrenergic receptors generates a β-adrenergic signaling unit with distinct functional properties. J Biol Chem 279:28756–28765PubMedCrossRefGoogle Scholar
  12. Bücheler M, Hadamek K, Hein L (2002) Two α2-adrenergic receptor subtypes, α2A and α2C, inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109:819–826PubMedCrossRefGoogle Scholar
  13. Bünemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077–16082PubMedCrossRefGoogle Scholar
  14. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136PubMedGoogle Scholar
  15. Carson RP, Robertson D (2002) Genetic manipulation of noradrenergic neurons. J Pharmacol Exp Ther 301:410–417PubMedCrossRefGoogle Scholar
  16. Cavalli A, Lattion AL et al (1997) Decreased blood pressure response in mice deficient of the α1B-adrenergic receptor. Proc Natl Acad Sci USA 94:11589–11594PubMedCrossRefGoogle Scholar
  17. Chalothorn D, McCune DF, Edelmann SE, Garcia-Cazarin ML, Tsujimoto G, Piascik MT (2002) Differences in the cellular localization and agonist-mediated internalization properties of the α1-adrenoceptor subtypes. Mol Pharmacol 61:1008–1016PubMedCrossRefGoogle Scholar
  18. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK (1999) Targeted disruption of the β2 adrenergic receptor gene. J Biol Chem 274:16694–16700PubMedCrossRefGoogle Scholar
  19. Cussac D, Schaak S, Gales C, Flordellis C, Denis C, Paris H (2001) α2B-Adrenergic receptors activate MAPK and modulate the proliferation of primary cultured proximal tubule cells. Am J Physiol Renal Physiol 8:8Google Scholar
  20. Daunt DA, Hurt C, Hein L, Kallio J, Feng F, Kobilka BK (1997) Subtype-specific intracellular trafficking of α2-adrenergic receptors. Mol Pharmacol 51:711–720PubMedGoogle Scholar
  21. DeGraff JL, Gagnon AW, Benovic JL, Orsini MJ (1999) Role of arrestins in endocytosis and signaling of α2-adrenergic receptor subtypes. J Biol Chem 274:11253–11259PubMedCrossRefGoogle Scholar
  22. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE et al (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79PubMedCrossRefGoogle Scholar
  23. Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP (2002) α1B-Adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22:2873–2884PubMedGoogle Scholar
  24. Fairbanks CA, Wilcox GL (1999) Moxonidine, a selective α2-adrenergic and imidazoline receptor agonist, produces spinal antinociception in mice. J Pharmacol Exp Ther 290:403–412PubMedGoogle Scholar
  25. Fairbanks CA, Stone LS, Kitto KF, Nguyen HO, Posthumus IJ, Wilcox GL (2002) α2C-Adrenergic receptors mediate spinal analgesia and adrenergic-opioid synergy. J Pharmacol Exp Ther 300:282–290PubMedCrossRefGoogle Scholar
  26. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914PubMedGoogle Scholar
  27. Frank M, Thumer L, Lohse MJ, Bunemann M (2005) G protein activation without subunit dissociation depends on a Gαi-specific region. J Biol Chem 280:24584–24590PubMedCrossRefGoogle Scholar
  28. Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284PubMedCrossRefGoogle Scholar
  29. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144PubMedCrossRefGoogle Scholar
  30. Hague C, Uberti MA, Chen Z, Hall RA, Minneman KP (2004) Cell surface expression of α1D-adrenergic receptors is controlled by heterodimerization with α1B-adrenergic receptors. J Biol Chem 279:15541–15549PubMedCrossRefGoogle Scholar
  31. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M (1996) A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392PubMedCrossRefGoogle Scholar
  32. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181–184PubMedCrossRefGoogle Scholar
  33. Hoffmann BB, Lefkowitz RJ (1996) Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE (eds) Goodman & Gilman’s pharmacological basis of therapeutics. McGraw-Hill, New York, pp 199–248Google Scholar
  34. Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM (1997) Assessment of the role of α2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 122:1339–1344PubMedCrossRefGoogle Scholar
  35. Hurt CM, Feng FY, Kobilka B (2000) Cell-type specific targeting of the α2C-adrenoceptor. Evidence for the organization of receptor microdomains during neuronal differentiation of PC12 cells. J Biol Chem 275:35424–35431PubMedCrossRefGoogle Scholar
  36. Janumpalli S, Butler LS, MacMillan LB, Limbird LE, McNamara JO (1998) A point mutation (D79N) of the α2A adrenergic receptor abolishes the antiepileptogenic action of endogenous norepinephrine. J Neurosci 18:2004–2008PubMedGoogle Scholar
  37. Kawasaki Y, Kumamoto E, Furue H, Yoshimura M (2003) α2 Adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 98:682–689PubMedCrossRefGoogle Scholar
  38. Kingery WS, Agashe GS, Guo TZ, Sawamura S, Frances Davies M, David Clark J, Kobilka BK, Maze M (2002) Isoflurane and nociception: spinal α2A adrenoceptors mediate antinociception while supraspinal α1 adrenoceptors mediate pronociception. Anesthesiology 96:367–374PubMedCrossRefGoogle Scholar
  39. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987) Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 238:650–656PubMedCrossRefGoogle Scholar
  40. Lahdesmaki J, Sallinen J, MacDonald E, Scheinin M (2004) α2A-Adrenoceptors are important modulators of the effects of D-amphetamine on startle reactivity and brain monoamines. Neuropsychopharmacology 29:1282–1293PubMedCrossRefGoogle Scholar
  41. Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant α2A-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 94:9950–9955PubMedCrossRefGoogle Scholar
  42. Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M, Hebert TE (2002) β12-Adrenergic receptor heterodimerization regulates β2-adrenergic receptor internalization and ERK signaling efficacy. J Biol Chem 277:35402–35410PubMedCrossRefGoogle Scholar
  43. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by β-arrestins. Science 308:512–517PubMedCrossRefGoogle Scholar
  44. Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse α2C-adrenoceptor homolog. Mol Pharmacol 48:48–55PubMedGoogle Scholar
  45. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273:803–805PubMedCrossRefGoogle Scholar
  46. Ma D, Hossain M, Rajakumaraswamy N, Arshad M, Sanders RD, Franks NP, Maze M (2004a) Dexmedetomidine produces its neuroprotective effect via the α2A-adrenoceptor subtype. Eur J Pharmacol 502:87–97PubMedCrossRefGoogle Scholar
  47. Ma D, Rajakumaraswamy N, Maze M (2004b) α2-Adrenoceptor agonists: shedding light on neuroprotection? Br Med Bull 71:77–92PubMedCrossRefGoogle Scholar
  48. MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting—homing in on α2-adrenoceptor-subtype function. Trends Pharmacol Sci 18:211–219PubMedGoogle Scholar
  49. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the α2A-adrenergic receptor subtype. Science 273:801–803PubMedCrossRefGoogle Scholar
  50. MacMillan LB, Lakhlani PP, Hein L, Piascik M, Guo TZ, Lovinger D, Maze M, Limbird LE (1998) In vivo mutation of the α2A-adrenergic receptor by homologous recombination reveals the role of this receptor subtype in multiple physiological processes. Adv Pharmacol 42:493–496PubMedCrossRefGoogle Scholar
  51. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M (2002) Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931PubMedCrossRefGoogle Scholar
  52. Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201–227PubMedCrossRefGoogle Scholar
  53. Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA (2004) A distinct role for norepinephrine in memory retrieval. Cell 117:131–143PubMedCrossRefGoogle Scholar
  54. Nicholas AP, Hokfelt T, Pieribone VA (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 17:245–255PubMedCrossRefGoogle Scholar
  55. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218PubMedCrossRefGoogle Scholar
  56. Olli-Lahdesmaki T, Kallio J, Scheinin M (1999) Receptor subtype-induced targeting and subtype-specific internalization of human α2-adrenoceptors in PC12 cells. J Neurosci 19:9281–9288PubMedGoogle Scholar
  57. Olli-Lahdesmaki T, Scheinin M, Pohjanoksa K, Kallio J (2003) Agonist-dependent trafficking of α2-adrenoceptor subtypes: dependence on receptor subtype and employed agonist. Eur J Cell Biol 82:231–239PubMedCrossRefGoogle Scholar
  58. Paris A, Philipp M, Tonner PH, Steinfath M, Lohse M, Scholz J, Hein L (2003) Activation of α2B-adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiology 99:889–895PubMedCrossRefGoogle Scholar
  59. Paris A, Mantz J, Tonner PH, Hein L, Brede M, Gressens P (2006) The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the α2A-adrenoceptor subtype. Anesth Analg 102:456–461PubMedCrossRefGoogle Scholar
  60. Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101:65–74PubMedCrossRefGoogle Scholar
  61. Philipp M, Brede M, Hadamek K, Gessler M, Lohse MJ, Hein L (2002a) Placental α2-adrenoceptors control vascular development at the interface between mother and embryo. Nat Genet 31:311–315PubMedCrossRefGoogle Scholar
  62. Philipp M, Brede M, Hein L (2002b) Physiological significance of α2-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283:R287–R295PubMedGoogle Scholar
  63. Prinster SC, Hague C, Hall RA (2005) Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57:289–298PubMedCrossRefGoogle Scholar
  64. Rohrer DK (1998) Physiological consequences of β-adrenergic receptor disruption. J Mol Med 76:764–772PubMedCrossRefGoogle Scholar
  65. Rohrer DK, Kobilka BK (1998) G protein-coupled receptors: functional and mechanistic insights through altered gene expression. Physiol Rev 78:35–52PubMedGoogle Scholar
  66. Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr, Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse β2-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci USA 93:7375–7380PubMedCrossRefGoogle Scholar
  67. Rokosh DG, Simpson PC (2002) Knockout of the α1A/C-adrenergic receptor subtype: the α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 99:9474–9479PubMedCrossRefGoogle Scholar
  68. Salahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M (2004) Homodimerization of the β2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279:33390–33397PubMedCrossRefGoogle Scholar
  69. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998) D-amphetamine and L-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the α2C-adrenergic receptor subtype. Neuroscience 86:959–965PubMedCrossRefGoogle Scholar
  70. Saunders C, Limbird LE (1999) Localization and trafficking of α2-adrenergic receptor subtypes in cells and tissues. Pharmacol Ther 84:193–205PubMedCrossRefGoogle Scholar
  71. Sawamura S, Kingery WS, Davies MF, Agashe GS, Clark JD, Kobilka BK, Hashimoto T, Maze M (2000) Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of α2B adrenoceptors. J Neurosci 20:9242–9251PubMedGoogle Scholar
  72. Scheibner J, Trendelenburg AU, Hein L, Starke K (2001) α2-Adrenoceptors modulating neuronal serotonin release: a study in α2-adrenoceptor subtype-deficient mice. Br J Pharmacol 132:925–933PubMedCrossRefGoogle Scholar
  73. Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the α2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci 68:2277–2285PubMedCrossRefGoogle Scholar
  74. Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395PubMedCrossRefGoogle Scholar
  75. Small KM, Schwarb MR, Glinka C, Theiss CT, Brown KM, Seman CA, Liggett SB (2006) α2A- and α2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and β-arrestin recruitment. Biochemistry 45:4760–4767PubMedCrossRefGoogle Scholar
  76. Spreng M, Cotecchia S, Schenk F (2001) A behavioral study of α1B adrenergic receptor knockout mice: increased reaction to novelty and selectively reduced learning capacities. Neurobiol Learn Mem 75:214–229PubMedCrossRefGoogle Scholar
  77. Stephens GJ, Mochida S (2005) G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol (Lond) 563:765–776CrossRefGoogle Scholar
  78. Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL (1997) The α2A adrenergic receptor subtype mediates spinal analgesia evoked by α2 agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci 17:7157–7165PubMedGoogle Scholar
  79. Surprenant A, Horstman DA, Akbarali H, Limbird LE (1992) A point mutation of the α2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 257:977–980PubMedCrossRefGoogle Scholar
  80. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the β3-adrenergic receptor gene. J Biol Chem 270:29483–29492PubMedCrossRefGoogle Scholar
  81. Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002) The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 109:765–775PubMedGoogle Scholar
  82. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25PubMedCrossRefGoogle Scholar
  83. Trendelenburg AU, Cox SL, Schelb V, Klebroff W, Khairallah L, Starke K (2000) Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues. Br J Pharmacol 130:321–330PubMedCrossRefGoogle Scholar
  84. Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three α2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn-Schmiedeberg’s Arch Pharmacol 368:504–512CrossRefGoogle Scholar
  85. Uberti MA, Hall RA, Minneman KP (2003) Subtype-specific dimerization of α1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol Pharmacol 64:1379–1390PubMedCrossRefGoogle Scholar
  86. Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21:807–812PubMedCrossRefGoogle Scholar
  87. Wang BH, Du XJ, Autelitano DJ, Milano CA, Woodcock EA (2000) Adverse effects of constitutively active α1B-adrenergic receptors after pressure overload in mouse hearts. Am J Physiol Heart Circ Physiol 279:H1079–H1086PubMedGoogle Scholar
  88. Weber B, Schaper C, Scholz J, Bein B, Rodde C, Tonner PH (2006) Interaction of the amyloid precursor like protein 1 with the α2A-adrenergic receptor increases agonist-mediated inhibition of adenylyl cyclase. Cell Signal March 9, Epub ahead of printGoogle Scholar
  89. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204PubMedCrossRefGoogle Scholar
  90. Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron 24:715–726PubMedCrossRefGoogle Scholar
  91. Wozniak M, Limbird LE (1998) Trafficking itineraries of G protein-coupled receptors in epithelial cells do not predict receptor localization in neurons. Brain Res 780:311–322PubMedCrossRefGoogle Scholar
  92. Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204–212PubMedCrossRefGoogle Scholar
  93. Yudowski GA, Puthenveedu MA, Zastrow M von (2006) Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane. Nat Neurosci 9:622–627PubMedCrossRefGoogle Scholar
  94. Zastrow M von, Link R, Daunt D, Barsh G, Kobilka B (1993) Subtype-specific differences in the intracellular sorting of G protein-coupled receptors. J Biol Chem 268:763–766Google Scholar
  95. Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM (2000) Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 6:1388–1394PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Exp. und Klin. Pharmakologie und ToxikologieUniversität FreiburgFreiburg im BreisgauGermany

Personalised recommendations