Cell and Tissue Research

, Volume 326, Issue 2, pp 273–285

The genetics of synapse formation and function in Caenorhabditis elegans

Review

Abstract

The aim of this review is to introduce the reader to Caenorhabditis elegans as a model system, especially with respect to studies of synapse formation and function. We begin by giving a short description of the structure of the nervous system of C. elegans. As most of the findings that are reviewed here have emerged from studies of neuromuscular junctions (NMJs), two prominent NMJs of C. elegans will be outlined briefly. In addition, we summarize new findings that have added to our understanding of NMJs during the last few years.

Keywords

Synaptic function Nervous system Neuromuscular junction Axonal guidance Caenorhabditis elegans 

References

  1. Ackley BD, Jin Y (2004) Genetic analysis of synaptic target recognition and assembly. Trends Neurosci 27:540–547PubMedCrossRefGoogle Scholar
  2. Ackley BD, Harrington RJ, Hudson ML, Williams L, Kenyon CJ, Chisholm AD, Jin Y (2005) The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J Neurosci 25:7517–7528PubMedCrossRefGoogle Scholar
  3. Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260PubMedCrossRefGoogle Scholar
  4. Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci 23:8060–8069PubMedGoogle Scholar
  5. Bastiani CA, Gharib S, Simon MI, Sternberg PW (2003) Caenorhabditis elegans Galphaq regulates egg-laying behavior via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle. Genetics 165:1805–1822PubMedGoogle Scholar
  6. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  7. Briese M, Esmaeili B, Johnson NM, Sattelle DB (2006) pWormgatePro enables promoter-driven knockdown by hairpin RNA interference of muscle and neuronal gene products in Caenorhabditis elegans. Invert Neurosci 6:5–12PubMedCrossRefGoogle Scholar
  8. Brundage L, Avery L, Katz A, Kim UJ, Mendel JE, Sternberg PW, Simon MI (1996) Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 16:999–1009PubMedCrossRefGoogle Scholar
  9. Butler SJ, Dodd J (2003) A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38:389–401PubMedCrossRefGoogle Scholar
  10. Carnell L, Illi J, Hong SW, McIntire SL (2005) The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J Neurosci 25:10671–10681PubMedCrossRefGoogle Scholar
  11. Chalfie M, White JG (1988) The nervous system. In: Wood WB (ed) The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 337–391Google Scholar
  12. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedCrossRefGoogle Scholar
  13. Chang C, Adler CE, Krause M, Clark SG, Gertler FB, Tessier-Lavigne M, Bargmann CI (2006) MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol 16:854–862PubMedCrossRefGoogle Scholar
  14. Charlie NK, Schade MA, Thomure AM, Miller KG (2006a) Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 172:943–961PubMedCrossRefGoogle Scholar
  15. Charlie NK, Thomure AM, Schade MA, Miller KG (2006b) The dunce cAMP phosphodiesterase PDE-4 negatively regulates G{alpha}s-dependent and G{alpha}s-independent cAMP pools in the C. elegans synaptic signaling network. Genetics 173(1):111–130CrossRefGoogle Scholar
  16. Charron F, Tessier-Lavigne M (2005) Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132:2251–2262PubMedCrossRefGoogle Scholar
  17. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23PubMedCrossRefGoogle Scholar
  18. Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096–1103PubMedCrossRefGoogle Scholar
  19. Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103:4723–4728PubMedCrossRefGoogle Scholar
  20. Chin-Sang ID, George SE, Ding M, Moseley SL, Lynch AS, Chisholm AD (1999) The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell 99:781–790PubMedCrossRefGoogle Scholar
  21. Chin-Sang ID, Moseley SL, Ding M, Harrington RJ, George SE, Chisholm AD (2002) The divergent C. elegans ephrin EFN-4 functions in embryonic morphogenesis in a pathway independent of the VAB-1 Eph receptor. Development 129:5499–5510PubMedCrossRefGoogle Scholar
  22. Chisholm AD, Jin Y (2005) Neuronal differentiation in C. elegans. Curr Opin Cell Biol 17:682–689PubMedCrossRefGoogle Scholar
  23. Crump JG, Zhen M, Jin Y, Bargmann CI (2001) The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29:115–129PubMedCrossRefGoogle Scholar
  24. Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY (2005) Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behaviorn. Genetics 169:1425–1436PubMedCrossRefGoogle Scholar
  25. Dalpe G, Zhang LW, Zheng H, Culotti JG (2004) Conversion of cell movement responses to semaphorin-1 and plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans. Development 131:2073–2088PubMedCrossRefGoogle Scholar
  26. Dalpe G, Brown L, Culotti JG (2005) Vulva morphogenesis involves attraction of plexin 1-expressing primordial vulva cells to semaphorin 1a sequentially expressed at the vulva midline. Development 132:1387–1400PubMedCrossRefGoogle Scholar
  27. Desai C, Garriga G, McIntire SL, Horvitz HR (1988) A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336:638–646PubMedCrossRefGoogle Scholar
  28. Dickson BJ, Keleman K (2002) Netrins Curr Biol 12:R154–R155CrossRefGoogle Scholar
  29. Duerr JS, Gaskin J, Rand JB (2001) Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoamines. Am J Physiol Cell Physiol 280:C1616–C1622PubMedGoogle Scholar
  30. Durbin RM (1987) Studies on the development and organisation of the nervous system of Caenorhabditis elegans. PhD thesis, University of FreiburgGoogle Scholar
  31. Feng Z, Cronin CJ, Wittig JH Jr, Sternberg PW, Schafer WR (2004) An imaging system for standardized quantitative analysis of C. elegans behavior. BMC Bioinformatics 5:115PubMedCrossRefGoogle Scholar
  32. Francis MM, Mellem JE, Maricq AV (2003) Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends Neurosci 26:90–99PubMedCrossRefGoogle Scholar
  33. Gottschalk A, Schafer WR (2006) Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 154(1–2):68–79PubMedCrossRefGoogle Scholar
  34. Hajdu-Cronin YM, Chen WJ, Patikoglou G, Koelle MR, Sternberg PW (1999) Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev 13:1780–1793PubMedCrossRefGoogle Scholar
  35. Hao JC, Yu TW, Fujisawa K, Culotti JG, Gengyo-Ando K, Mitani S, Moulder G, Barstead R, Tessier-Lavigne M, Bargmann CI (2001) C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32:25–38PubMedCrossRefGoogle Scholar
  36. Hardaker LA, Singer E, Kerr R, Zhou G, Schafer WR (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol 49:303–313PubMedCrossRefGoogle Scholar
  37. Hobert O, D’Alberti T, Liu Y, Ruvkun G (1998) Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J Neurosci 18:2084–2096PubMedGoogle Scholar
  38. Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW (2006) SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172:159–169PubMedCrossRefGoogle Scholar
  39. Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014PubMedCrossRefGoogle Scholar
  40. Hutter H (2003) Extracellular cues and pioneers act together to guide axons in the ventral cord of C. elegans. Development 130:5307–5318PubMedCrossRefGoogle Scholar
  41. Hutter H, Wacker I, Schmid C, Hedgecock EM (2005) Novel genes controlling ventral cord asymmetry and navigation of pioneer axons in C. elegans. Dev Biol 284:260–272PubMedCrossRefGoogle Scholar
  42. Itoh B, Hirose T, Takata N, Nishiwaki K, Koga M, Ohshima Y, Okada M (2005) SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development 132:5161–5172PubMedCrossRefGoogle Scholar
  43. Iwasaki K, Toyonaga R (2000) The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J 19:4806–4816PubMedCrossRefGoogle Scholar
  44. Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH (1997) Aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–622PubMedCrossRefGoogle Scholar
  45. Jia L, Emmons SW (2006) Genes that control ray sensory neuron axon development in the C. elegans male. Genetics DOI 10.1534/genetics.106.057000
  46. Jin Y, Hoskins R, Horvitz HR (1994) Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372:780–783PubMedCrossRefGoogle Scholar
  47. Kim K, Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475:540–550PubMedCrossRefGoogle Scholar
  48. Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84:115–125PubMedCrossRefGoogle Scholar
  49. Kohn RE, Duerr JS, McManus JR, Duke A, Rakow TL, Maruyama H, Moulder G, Maruyama IN, Barstead RJ, Rand JB (2000) Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol Biol Cell 11:3441–3452PubMedGoogle Scholar
  50. Lackner MR, Nurrish SJ, Kaplan JM (1999) Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24:335–346PubMedCrossRefGoogle Scholar
  51. Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739:323–330PubMedGoogle Scholar
  52. Lee RY, Sawin ER, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167PubMedGoogle Scholar
  53. Lewis JA, Wu CH, Levine JH, Berg H (1980) Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5:967–989PubMedCrossRefGoogle Scholar
  54. Li C (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131 (Suppl):S109–S127PubMedGoogle Scholar
  55. Lim YS, Wadsworth WG (2002) Identification of domains of netrin UNC-6 that mediate attractive and repulsive guidance and responses from cells and growth cones. J Neurosci 22:7080–7087PubMedGoogle Scholar
  56. Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ, Zou Y (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8:1151–1159PubMedCrossRefGoogle Scholar
  57. Madison JM, Nurrish S, Kaplan JM (2005) UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 15:2236–2242PubMedCrossRefGoogle Scholar
  58. Mahoney TR, Liu Q, Itoh T, Luo S, Hadwiger G, Vincent R, Wang ZW, Fukuda M, Nonet ML (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 6:2617–2625CrossRefGoogle Scholar
  59. Maruyama IN, Brenner S (1991) A phorbol ester/diacylglycerol-binding protein encoded by the UNC-13 gene of Caenorhabditis elegans. Proc Natl Acad Sci USA 88:5729–5733PubMedCrossRefGoogle Scholar
  60. McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364:337–341PubMedCrossRefGoogle Scholar
  61. McMullan R, Hiley E, Morrison P, Nurrish SJ (2006) Rho is a presynaptic activator of neurotransmitter release at pre-existing synapses in C. elegans. Genes Dev 20:65–76PubMedCrossRefGoogle Scholar
  62. Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, Plasterk RH, Sternberg PW (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267:1652–1655PubMedCrossRefGoogle Scholar
  63. Merz DC, Alves G, Kawano T, Zheng H, Culotti JG (2003) UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 256:173–186PubMedCrossRefGoogle Scholar
  64. Miller KG, Emerson MD, McManus JR, Rand JB (2000) RIC-8 (synembryn): a novel conserved protein that is required for G(q)alpha signaling in the C. elegans nervous system. Neuron 27:289–299PubMedCrossRefGoogle Scholar
  65. Miller KG, Emerson MD, Rand JB (1999) Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron 24:323–333PubMedCrossRefGoogle Scholar
  66. Mohamed AM, Chin-Sang ID (2006) Characterization of loss-of-function and gain-of-function Eph receptor tyrosine kinase signaling in C. elegans axon targeting and cell migration. Dev Biol 290:164–176PubMedCrossRefGoogle Scholar
  67. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284PubMedCrossRefGoogle Scholar
  68. Nguyen M, Alfonso A, Johnson CD, Rand JB (1995) Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140:527–535PubMedGoogle Scholar
  69. Nonet ML, Staunton JE, Kilgard MP, Fergestad T, Hartwieg E, Horvitz HR, Jorgensen EM, Meyer BJ (1997) Caenorhabditis elegans RAB-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J Neurosci 17:8061–8073PubMedGoogle Scholar
  70. Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18:70–80PubMedGoogle Scholar
  71. Nurrish S, Ségalat L, Kaplan JM (1999) Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24:231–242PubMedCrossRefGoogle Scholar
  72. Pan CL, Howell JE, Clark SG, Hilliard M, Cordes S, Bargmann CI, Garriga G (2006) Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev Cell 10:367–377PubMedCrossRefGoogle Scholar
  73. Prasad BC, Clark SG (2006) Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133:1757–1766PubMedCrossRefGoogle Scholar
  74. Quinn CC, Pfeil DS, Chen E, Stovall EL, Harden MV, Gavin MK, Forrester WC, Ryder EF, Soto MC, Wadsworth WG (2006) UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/Lamellipodin. Curr Biol 16:845–853PubMedCrossRefGoogle Scholar
  75. Rand JB, Nonet ML (1997) Synaptic transmission. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (ed) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 611–644Google Scholar
  76. Reynolds NK, Schade MA, Miller KG (2005) Convergent, RIC-8-dependent Galpha signaling pathways in the Caenorhabditis elegans synaptic signaling network. Genet 169:651–670CrossRefGoogle Scholar
  77. Richmond JE, Davis WS, Jorgensen EM (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 2:959–964PubMedCrossRefGoogle Scholar
  78. Richmond JE, Weimer RM, Jorgensen EM (2001) An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–341PubMedCrossRefGoogle Scholar
  79. Runko E, Kaprielian Z (2004) Caenorhabditis elegans VEM-1, a novel membrane protein, regulates the guidance of ventral nerve cord-associated axons. J Neurosci 24:9015–9026PubMedCrossRefGoogle Scholar
  80. Saifee O, Wei L, Nonet ML (1998) The Caenorhabditis elegans UNC-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell 9:1235–1252PubMedGoogle Scholar
  81. Sandoval GM, Duerr JS, Hodgkin J, Rand JB, Ruvkun G (2006) A genetic interaction between the vesicular acetylcholine transporter VAChT/UNC-17 and synaptobrevin/SNB-1 in C. elegans. Nat Neurosci 9:599–601PubMedCrossRefGoogle Scholar
  82. Sarafi-Reinach TR, Melkman T, Hobert O, Sengupta P (2001) The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development 128:3269–3281PubMedGoogle Scholar
  83. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631PubMedCrossRefGoogle Scholar
  84. Schade MA, Reynolds NK, Dollins CM, Miller KG (2005) Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network. Genetics 169:631–649PubMedCrossRefGoogle Scholar
  85. Schinkmann K, Li C (1992) Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol 316:251–260PubMedCrossRefGoogle Scholar
  86. Schlüter OM, Schmitz F, Jahn R, Rosenmund C, Sudhof TC (2004) A complete genetic analysis of neuronal Rab3 function. J Neurosci 24:6629–6637PubMedCrossRefGoogle Scholar
  87. Schnorrer F, Dickson BJ (2004) Axon guidance: morphogens show the way. Curr Biol 14:R19–R21PubMedCrossRefGoogle Scholar
  88. Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414PubMedCrossRefGoogle Scholar
  89. Ségalat L, Elkes DA, Kaplan JM (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267:1648–1651CrossRefGoogle Scholar
  90. Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M (1998) Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 273:15611–15620PubMedCrossRefGoogle Scholar
  91. Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual JF, Hill DE, Vidal M, Ruvkun G, Kaplan JM (2005) Systematic analysis of genes required for synapse structure and function.Nature 436:510–517PubMedCrossRefGoogle Scholar
  92. Shyn SI, Kerr R, Schafer WR (2003) Serotonin and Go modulate functional states of neurons and muscles controlling C. elegans egg-laying behavior. Curr Biol 13:1910–1915PubMedCrossRefGoogle Scholar
  93. Staunton J, Ganetzky B, Nonet ML (2001) Rabphilin potentiates soluble N-ethylmaleimide sensitive factor attachment protein receptor function independently of rab3. J Neurosci 21:9255–9264PubMedGoogle Scholar
  94. Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226PubMedCrossRefGoogle Scholar
  95. Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24:180–183PubMedCrossRefGoogle Scholar
  96. Tong J, Killeen M, Steven R, Binns KL, Culotti J, Pawson TJ (2001) Netrin stimulates tyrosine phosphorylation of the UNC-5 family of netrin receptors and induces Shp2 binding to the RCM cytodomain. Biol Chem 276:40917–40925CrossRefGoogle Scholar
  97. Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647PubMedGoogle Scholar
  98. Wadsworth WG (2002) Moving around in a worm: netrin UNC-6 and circumferential axon guidance in C. elegans. Trends Neurosci 25:423–429PubMedCrossRefGoogle Scholar
  99. Wang X, Roy PJ, Holland SJ, Zhang LW, Culotti JG, Culotti T (1999) Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol Cell 4:903–913PubMedCrossRefGoogle Scholar
  100. Weimer RM, Richmond JE (2005) Synaptic vesicle docking: a putative role for the Munc18/Sec1 protein family. Curr Top Dev Biol 65:83–113PubMedCrossRefGoogle Scholar
  101. Weimer RM, Richmond JE, Davis WS, Hadwiger G, Nonet ML, Jorgensen EM (2003) Defects in synaptic vesicle docking in UNC-18 mutants. Nat Neurosci 6:1023–1030PubMedCrossRefGoogle Scholar
  102. Weinshenker D, Garriga G, Thomas JH (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci 15:6975–6985PubMedGoogle Scholar
  103. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Biol 314:1–340CrossRefGoogle Scholar
  104. Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406:306–309PubMedCrossRefGoogle Scholar
  105. Yu TW, Hao JC, Lim W, Tessier-Lavigne M, Bargmann CI (2002) Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a netrin-independent UNC-40/DCC function. Nat Neurosci 5:1147–1154CrossRefGoogle Scholar
  106. Yurchenco PD, Wadsworth WG (2004) Assembly and tissue functions of early embryonic laminins and netrins. Curr Opin Cell Biol 16:572–579PubMedCrossRefGoogle Scholar
  107. Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401:371–375PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mark Seifert
    • 1
  • Enrico Schmidt
    • 1
  • Ralf Baumeister
    • 1
    • 2
  1. 1.Bio 3, Bioinformatics and Molecular GeneticsUniversity of FreiburgFreiburg (Brsg.)Germany
  2. 2.ZBSA-Freiburg Centre for Systems BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations