Cell and Tissue Research

, Volume 326, Issue 2, pp 583–598 | Cite as

Neuropeptides as synaptic transmitters

  • Chiara Salio
  • Laura Lossi
  • Francesco Ferrini
  • Adalberto Merighi


Neuropeptides are small protein molecules (composed of 3–100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.


Neurotransmission Synapses Neuropeptides Large granular vesicles Ultrastructure Colocalization 



5-hydroxytryptamine or serotonin




agouti gene-related protein


cocaine- and amphetamine-regulated transcript




calcitonin gene-related peptide


central nervous system


corticotropin-releasing hormone


dorsal root ganglion


delta sleep-inducing peptide


γ-amino-butyric acid


glucagon-like peptide 1


G-protein-coupled receptor


islet amyloid polypeptide


large granular vesicle


luteinizing hormone-releasing hormone


α-melanocyte-stimulating hormone


nitric oxide


neuropeptide tyrosine


pituitary adenylyl cyclase-activating peptide


peptide histidine isoleucine


pancreatic polypeptide


polymerase chain reaction


peripheral nervous system


peptide tyrosine tyrosine


substance P


small synaptic vesicle


trans-Golgi network


thyrotropin-releasing hormone


vasoactive intestinal polypeptide


  1. Agnati LF, Fuxe K, Benfenati F, Battistini N, Harfstrand A, Hökfelt T, Cavicchioli L, Tatemoto K, Mutt V (1983) Failure of neuropeptide Y in vitro to increase the number of alpha 2-adrenergic binding sites in membranes of medulla oblongata of the spontaneous hypertensive rat. Acta Physiol Scand 119:309–312PubMedCrossRefGoogle Scholar
  2. Aimar P, Pasti L, Carmignoto G, Merighi A (1998) Nitric oxide-producing islet cells modulate the release of sensory neuropeptides in the rat substantia gelatinosa. J Neurosci 18:10375–10388PubMedGoogle Scholar
  3. Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244PubMedCrossRefGoogle Scholar
  4. Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097PubMedCrossRefGoogle Scholar
  5. Angulo JA, McEwen BS (1994) Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res Brain Res Rev 19:1–28PubMedCrossRefGoogle Scholar
  6. Aoki C, Pickel VM (1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann N Y Acad Sci 611:186–205PubMedCrossRefGoogle Scholar
  7. Artalejo CR, Elhamdani A, Palfrey HC (1998) Secretion: dense-core vesicles can kiss-and-run too. Curr Biol 8:R62–R65PubMedCrossRefGoogle Scholar
  8. Arvidsson U, Cullheim S, Ulfhake B, Bennett GW, Fone KCF, Cuello AC, Verhofstad AAJ, Visser TJ, Hökfelt T (1990a) 5-Hydroxytryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: immunohistochemical and chemical studies. Synapse 6:237CrossRefGoogle Scholar
  9. Arvidsson U, Schalling M, Cullheim S, Ulfhake B, Terenius L, Verhofstad A, Hökfelt T (1990b) Evidence for coexistence between calcitonin gene-related peptide and serotonin in the bulbospinal pathway in the monkey. Brain Res 532:47–57CrossRefGoogle Scholar
  10. Arvidsson U, Cullheim S, Ulfhake B, Luppi PH, Kitahama K, Jouvet M, Hökfelt T (1994) Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. J Chem Neuroanat 7:3–12PubMedCrossRefGoogle Scholar
  11. Arvieu L, Mauborgne A, Bourgoin S, Oliver C, Feltz P, Hamon M, Cesselin F (1996) Sumatriptan inhibits the release of CGRP and substance P from the rat spinal cord. Neuroreport 7:1973–1976PubMedCrossRefGoogle Scholar
  12. Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417–7423PubMedGoogle Scholar
  13. Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106PubMedCrossRefGoogle Scholar
  14. Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299PubMedCrossRefGoogle Scholar
  15. Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32PubMedCrossRefGoogle Scholar
  16. Bean AJ, Zhang X, Hökfelt T (1994) Peptide secretion: what do we know? FASEB J 8:630–638PubMedGoogle Scholar
  17. Bock MG, DiPardo R, Evans BE, Rittle KE, Whitter WL, Veber DE, Anderson PS, Freidinger RM (1989) Benzodiazepine gastrin and brain cholecystokinin receptor ligands: L-365,260. J Med Chem 32:13–16PubMedCrossRefGoogle Scholar
  18. Bockstaele EJ van, Saunders A, Commons KG, Liu XB, Peoples J (2000) Evidence for coexistence of enkephalin and glutamate in axon terminals and cellular sites for functional interactions of their receptors in the rat locus coeruleus. J Comp Neurol 417:103–114PubMedCrossRefGoogle Scholar
  19. Bondy CA, Whitnall MH, Brady LS, Gainer H (1989) Coexisting peptides in hypothalamic neuroendocrine systems: some functional implications. Cell Mol Neurobiol 9:427–446PubMedCrossRefGoogle Scholar
  20. Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543PubMedCrossRefGoogle Scholar
  21. Brigadski T, Hartmann M, Lessmann V (2005) Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins. J Neurosci 25:7601–7614PubMedCrossRefGoogle Scholar
  22. Buijs RM, Wortel J, Hou YX (1995) Colocalization of gamma-amino butyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J Comp Neurol 358:343–352PubMedCrossRefGoogle Scholar
  23. Buma P (1988) Synaptic and nonsynaptic release of neuromediators in the central nervous system. Acta Morphol Nederl-Scand 26:81–113Google Scholar
  24. Burgen A, Kosterlitz HW, Iversen LL (1980) Neuroactive peptides. Royal Society, LondonGoogle Scholar
  25. Calo’ G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129:1261–1283PubMedCrossRefGoogle Scholar
  26. Caruso DM, Owczarzak MT, Pourcho RG (1990) Colocalization of substance P and GABA in retinal ganglion cells: a computer-assisted visualization. Vis Neurosci 5:389–394PubMedCrossRefGoogle Scholar
  27. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24:8940–8949PubMedCrossRefGoogle Scholar
  28. Chan-Palay V (1988) Neurons with galanin innervate cholinergic cells in the human basal forebrain and galanin and acetylcholine coexist. Brain Res Bull 21:465–472PubMedCrossRefGoogle Scholar
  29. Chan-Palay V, Palay SL (1984) Coexistence of neuroactive substances in neurons. Wiley, New YorkGoogle Scholar
  30. Charlton CG, Helke CJ (1986) Ontogeny of substance P receptors in rat spinal cord: quantitative changes in receptor number and differential expression in specific loci. Brain Res 394:81–91PubMedGoogle Scholar
  31. Charnay Y, Paulin C, Chayvialle JA, Dubois PM (1983) Distribution of substance P-like immunoreactivity in the spinal cord and dorsal root ganglia of the human foetus and infant. Neuroscience 10:41–55PubMedCrossRefGoogle Scholar
  32. Civelli O, Nothacker H-P, Saito Y, Wang Z, Lin SHS, Reinscheid RK (2001) Novel neurotransmitters as natural ligands of orphan g-protein coupled receptors. Trends Neurosci 24:230–237PubMedCrossRefGoogle Scholar
  33. Collin E, Mantelet S, Frechilla D, Pohl M, Bourgoin S, Hamon M, Cesselin F (1993) Increased in vivo release of calcitonin gene-related peptide-like material from the spinal cord in arthritic rats. Pain 54:203–211PubMedCrossRefGoogle Scholar
  34. Collin E, Frechilla D, Pohl M, Bourgoin S, Mauborgne A, Hamon M, Cesselin F (1994) Differential effects of the novel analgesic, S 12813–4, on the spinal release of substance P- and calcitonin gene-related peptide-like materials in the rat. Naunyn-Schmiedebergs Arch Pharmacol 349:387–393PubMedGoogle Scholar
  35. Consolo S, Palazzi E, Bertorelli R, Fisone G, Crawley J, Hökfelt T, Bartfai T (1990) Functional aspects of acetylcholine-galanin coexistence in the brain. Prog Brain Res 84:279–287PubMedCrossRefGoogle Scholar
  36. Coulouarn Y, JS, Tostivint H, Vaudry H, Lihrmann I (1999) Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Lett 457:28–32PubMedCrossRefGoogle Scholar
  37. Crawley JN (1990) Coexistence of neuropeptides and “classical” neurotransmitters. Functional interactions between galanin and acetylcholine. Ann N Y Acad Sci 579:233–245PubMedCrossRefGoogle Scholar
  38. Crawley JN (1993) Functional interactions of galanin and acetylcholine: relevance to memory and Alzheimer’s disease. Behav Brain Res 57:133–141PubMedCrossRefGoogle Scholar
  39. Cuello AC (1982) Co-transmission. McMillan, LondonGoogle Scholar
  40. Cuello AC, Polak JM, Pearse AGE (1976) Substance P: a naturally occurring transmitter in human spinal cord. Lancet II:1054–1056CrossRefGoogle Scholar
  41. Dalkin AC, Haisenleder DJ, Ortolano GA, Ellis TR, Marshall JC (1989) The frequency of gonadotropin-releasing-hormone stimulation differentially regulates gonadotropin subunit messenger ribonucleic acid expression. Endocrinology 125:917–924PubMedCrossRefGoogle Scholar
  42. Dalsgaard CJ, Jernbeck J, Stain W, Kjartansson J, Haegerstrand A, Hökfelt T, Brodin E, Cuello AC, Brown JC (1989) Calcitonin gene-related peptide-like immunoreactivity in nerve fibres in the human skin: relation to fibres containing substance P-, somatostatin- and vasoactive intestinal polypeptide-like immunoreactivity. Histochemistry 91:35–38PubMedCrossRefGoogle Scholar
  43. Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci 21:215–221PubMedCrossRefGoogle Scholar
  44. De Biasi S, Rustioni A (1988) Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of the spinal cord. Proc Natl Acad Sci USA 85:7820–7824PubMedCrossRefGoogle Scholar
  45. De Biasi S, Rustioni A (1991) Ultrastructural immunocytochemical localization of excitatory amino acids in the somatosensory system. J Histochem Cytochem 38:1745–1754Google Scholar
  46. De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645PubMedCrossRefGoogle Scholar
  47. De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJ, Laird JMA, Ben-Ari Y, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397PubMedCrossRefGoogle Scholar
  48. Delander GE, Schott E, Brodin E, Fredholm BB (1997) Temporal changes in spinal cord expression of mRNA for substance P, dynorphin and enkephalin in a model of chronic pain. Acta Physiol Scand 161:509–516PubMedCrossRefGoogle Scholar
  49. Doods HN, Wieland HA, Engel W, Eberlein W, Willim KD, Entzeroth M, Wienen W, Rudolf K (1996) BIBP 226, the first selective neuropeptide Y1 receptor antagonist: a review of its pharmacological properties. Regul Pept 65:71–77PubMedCrossRefGoogle Scholar
  50. Dun NJ, Dun SL, Wong RK, Forstermann U (1994) Colocalization of nitric oxide synthase and somatostatin immunoreactivity in rat dentate hilar neurons. Proc Natl Acad Sci USA 91:2955–2959PubMedCrossRefGoogle Scholar
  51. Elhamdani A, Palfrey HC, Artalejo CR (2001) Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31:819–830PubMedCrossRefGoogle Scholar
  52. Emson PC, Lindvall O (2001) Distribution of putative neurotransmitters in the neocortex. Neuroscience 79:1–30Google Scholar
  53. Erspamer V (1981) The tachykinin peptide family. Trends Neurosci 4:267–269CrossRefGoogle Scholar
  54. Euler US von, Gaddum J (1931) An unidentified depressor substance in certain tissue extracts. J Physiol (Lond) 72:74–81Google Scholar
  55. Fisher JM, Sossin W, Newcomb R, Scheller RH (1988) Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54:813–822PubMedCrossRefGoogle Scholar
  56. Fitzpatrick-McElligott S, Card JP, O’Kane TM, Baldino F (1991) Ontogeny of somatostatin mRNA-containing perikarya in the rat central nervous system. Synapse 7:123–134PubMedCrossRefGoogle Scholar
  57. Folkers K, Hörig J, Rampold G, Lane P, Rosell S, Björkroth U (1982) Design and synthesis of effective antagonists of substance P. Acta Chem Scand 36:389–395CrossRefGoogle Scholar
  58. Folkers K, Feng DM, Asano N, Håkanson R, Wiesenfeld-Hallin Z, Leander S (1990) Spantide II, an effective tachykinin antagonist having high potency and negligible neurotoxicity. Proc Natl Acad Sci USA 87:4833–4835PubMedCrossRefGoogle Scholar
  59. Fried G (1982) Neuropeptide storage in vesicles. In: Klein RL, Lagercrantz H, Zimmermann H (eds) Neurotransmitter vesicles. Academic Press, London New York, pp 361–374Google Scholar
  60. Fried G, Terenius L, Hökfelt T, Goldstein M (1985) Evidence for differential localization of noradrenaline and neuropeptide Y (NPY) in neuronal storage vesicles isolated from rat vas deferens. J Neurosci 5:450–458PubMedGoogle Scholar
  61. Garry MG, Hargreaves KM (1992) Enhanced release of immunoreactive CGRP and substance P from spinal dorsal horn slices occurs during carrageenan inflammation. Brain Res 582:139–142PubMedCrossRefGoogle Scholar
  62. Garry MG, Richardson JD, Hargreaves KM (1994) Sodium nitroprusside evokes the release of immunoreactive calcitonin gene-related peptide and substance P from dorsal horn slices via nitric oxide-dependent and nitric oxide-independent mechanisms. J Neurosci 14:4329–4337PubMedGoogle Scholar
  63. Giachetti A, Said SI, Reynolds RC, Koniges FC (1977) Vasoactive intestinal polypeptide in brain: localization in and release from isolated nerve terminals. Proc Natl Acad Sci USA 74:3424–3428PubMedCrossRefGoogle Scholar
  64. Gibson CL, Clowry GJ (1999) Transient expression of calcitonin gene-related peptide immunoreactivity in the ventral horn of the post-natal rat cervical spinal cord. Brain Res Dev Brain Res 115:93–96PubMedCrossRefGoogle Scholar
  65. Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JFB, Kelly JS, Evans RM, Rosenfeld MG (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci 4:3101–3111PubMedGoogle Scholar
  66. Glasgow E, Kusano K, Chin H, Mezey E, Young WS, Gainer H (1999) Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140:5391–5401PubMedCrossRefGoogle Scholar
  67. Glowinski J, Kemel ML, Desban M, Gauchy C, Lavielle S, Chassaing G, Beaujouan JC, Tremblay L (1993) Distinct presynaptic control of dopamine release in striosomal- and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2 and NK3 tachykinin receptors. Regul Pept 46:124–128PubMedCrossRefGoogle Scholar
  68. Gray TS, Morley JE (1986) Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 38:389–401PubMedCrossRefGoogle Scholar
  69. Guillemin R (2005) Hypothalamic hormones a.k.a. hypothalamic releasing factors. J Endocrinol 184:11–28PubMedCrossRefGoogle Scholar
  70. Gulbenkian S, Merighi A, Wharton J, Varndell IM, Polak JM (1986) Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol 15:535–542PubMedCrossRefGoogle Scholar
  71. Halliday GM, Li YW, Joh TH, Cotton RG, Howe PR, Geffen LB, Blessing WW (1988) Distribution of substance P-like immunoreactive neurons in the human medulla oblongata: co-localization with monoamine-synthesizing neurons. Synapse 2:353–370PubMedCrossRefGoogle Scholar
  72. Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155PubMedCrossRefGoogle Scholar
  73. Harata N, Pyle JL, Aravanis AM, Mozhayeva M, Kavalali ET, Tsien RW (2001) Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci 24:637–643PubMedCrossRefGoogle Scholar
  74. Harling H, Messell T, Poulsen SS, Rasmussen TN, Holst JJ (1991) Galanin and vasoactive intestinal polypeptide: coexistence and corelease from the vascularly perfused pig ileum during distension and chemical stimulation of the mucosa. Digestion 50:61–71PubMedCrossRefGoogle Scholar
  75. Henry JN, Manaker S (1998) Colocalization of substance P or enkephalin in serotoninergic neuronal afferents to the hypoglossal nucleus in the rat. J Comp Neurol 391:491–505PubMedCrossRefGoogle Scholar
  76. Hershey AD, Krause JE (1990) Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science 247:958–962PubMedCrossRefGoogle Scholar
  77. Heym C, Kummer W (1989) Immunohistochemical distribution and colocalization of regulatory peptides in the carotid body. J Electron Microsc Tech 12:331–342PubMedCrossRefGoogle Scholar
  78. Hill R (2000) NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Physiol Sci 21:244–246CrossRefGoogle Scholar
  79. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M (1998) A prolactin-releasing peptide in the brain. Nature 393:272–276PubMedCrossRefGoogle Scholar
  80. Hinuma S, Onda H, Fujino M (1999) The quest for novel bioactive peptides utilizing orphan seven-transmembrane-domain receptors. J Mol Med 77:495–504PubMedCrossRefGoogle Scholar
  81. Hisano S, Daikoku S, Yanaihara N, Shibasaki T (1986) Intragranular colocalization of CRF and Met-Enk-8 in nerve terminals in the rat median eminence. Brain Res 370:321–326PubMedCrossRefGoogle Scholar
  82. Hisano S, Tsuruo Y, Katoh S, Daikoku S, Yanaihara N, Shibasaki T (1987) Intragranular colocalization of arginine vasopressin and methionine-enkephalin-octapeptide in CRF-axons in the rat median eminence. Cell Tissue Res 249:497–507PubMedCrossRefGoogle Scholar
  83. Hökfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879PubMedCrossRefGoogle Scholar
  84. Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284:515–521PubMedCrossRefGoogle Scholar
  85. Hökfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225:1326–1334PubMedCrossRefGoogle Scholar
  86. Hökfelt T, Millhorn D, Seroogy K, Tsuruo Y, Ceccatelli S, Lindh B, Meister B, Melander T, Schalling M, Bartfai T (1987) Coexistence of peptides with classical neurotransmitters. Experientia 43:768–780PubMedCrossRefGoogle Scholar
  87. Hökfelt T, Zhang X, Verge V, Villar M, Elde R, Bartfai T, Xu XJ, Wiesenfeld-Hallin Z (1993) Coexistence and interaction of neuropeptides with substance P in primary sensory neurons, with special reference to galanin. Regul Pept 46:76–80PubMedCrossRefGoogle Scholar
  88. Hökfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17:22–30PubMedCrossRefGoogle Scholar
  89. Hökfelt T, Arvidsson U, Cullheim S, Millhorn D, Nicholas AP, Pieribone V, Seroogy K, Ulfhake B (2000a) Multiple messengers in descending serotonin neurons: localization and functional implications. J Chem Neuroanat 18:75–86CrossRefGoogle Scholar
  90. Hökfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000b) Neuropeptides—an overview. Neuropharmacology 39:1337–1356CrossRefGoogle Scholar
  91. Holst JJ, Fahrenkrug J, Knuhtsen S, Jensen SL, Nielsen OV, Lundberg JM, Hökfelt T (1987) VIP and PHI in the pig pancreas: coexistence, corelease, and cooperative effects. Am J Physiol 252:G182–G189PubMedGoogle Scholar
  92. Holtback U, Brismar H, DiBona GF, Fu M, Greengard P, Aperia A (1999) Receptor recruitment: a mechanism for interactions between G protein-coupled receptors. Proc Natl Acad Sci USA 96:7271–7275PubMedCrossRefGoogle Scholar
  93. Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C (1997) Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res 756:283–286PubMedCrossRefGoogle Scholar
  94. Huang LY, Neher E (1996) Ca(2+)-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 17:135–145PubMedCrossRefGoogle Scholar
  95. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579PubMedCrossRefGoogle Scholar
  96. Illes P, Regenold JT (1990) Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Nature 344:62–63PubMedCrossRefGoogle Scholar
  97. Isaac JT, Nicoll RA, Malenka RC (1999) Silent glutamatergic synapses in the mammalian brain. Can J Physiol Pharmacol 77:735–737PubMedCrossRefGoogle Scholar
  98. Jirikowski GF, Ramalho-Ortigao FJ, Caldwell JD (1991) Transitory coexistence of oxytocin and vasopressin in the hypothalamo neurohypophysial system of parturient rats. Horm Metab Res 23:476–480PubMedCrossRefGoogle Scholar
  99. Johnson H, Hökfelt T, Ulfhake B (1992) Galanin- and CGRP-like immunoreactivity coexist in rat spinal motoneurons. Neuroreport 3:303–306PubMedCrossRefGoogle Scholar
  100. Jones EG, Hendry SH (1986) Peptide-containing neurons of the primate cerebral cortex. Res Publ Assoc Res Nerv Ment Dis 64:163–178PubMedGoogle Scholar
  101. Juaneda C, Dubourg P, Ciofi P, Corio M, Tramu G (1999) Ultrastructural colocalization of vesicular cholecystokinin and corticoliberin in the periportal nerve terminals of the rat median eminence. J Neuroendocrinol 11:203–209PubMedCrossRefGoogle Scholar
  102. Karhunen T, Vilim FS, Alexeeva V, Weiss KR, Church PJ (2001) Targeting of peptidergic vesicles in cotransmitting terminals. J Neurosci 21:RC127PubMedGoogle Scholar
  103. Kawai Y, Emson PC, Hillyard CJ, Girgis S, MacIntyre I, Oertel WH, Tohyama M (1987) Immunohistochemical evidence for the coexistence of calcitonin gene-related peptide and glutamate decarboxylase-like immunoreactivities in the Purkinje cells of the rat cerebellum. Brain Res 409:371–373PubMedCrossRefGoogle Scholar
  104. Kessler JA (1985) Differential regulation of peptide and catecholamine characters in cultured sympathetic neurons. Neuroscience 15:827–839PubMedCrossRefGoogle Scholar
  105. Kits KS, Mansvelder HD (2000) Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. Brain Res Brain Res Rev 33:78–94PubMedCrossRefGoogle Scholar
  106. Kits KS, Dreijer AM, Lodder JC, Borgdorff A, Wadman WJ (1997) High intracellular calcium levels during and after electrical discharges in molluscan peptidergic neurons. Neuroscience 79:275–284PubMedCrossRefGoogle Scholar
  107. Klumperman J, Spijker S, van Minnan J, Sharp-Baker H, Smit AB, Geraerts WP (1996) Cell type-specific sorting of neuropeptides: a mechanism to modulate peptide composition of large dense-core vesicles. J Neurosci 16:7930–7940PubMedGoogle Scholar
  108. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522PubMedCrossRefGoogle Scholar
  109. Kojima M, Hosoda H, Kangawa K (2001) Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor. Horm Res 56(Suppl 1):93–97PubMedCrossRefGoogle Scholar
  110. Kosaka T, Kosaka K, Tateishi K, Hamaoka Y, Yanaihara N, Wu JY, Hama K (1985) GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus. J Comp Neurol 239:420–430PubMedCrossRefGoogle Scholar
  111. Kupfermann I (1991) Functional studies of cotransmission. Physiol Rev 71:683–732PubMedGoogle Scholar
  112. Laing I, Todd AJ, Heizmann CW, Schmidt HHHW (1994) Subpopulations of GABAergic neurons in laminae I–III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 61:123–132PubMedCrossRefGoogle Scholar
  113. Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176PubMedCrossRefGoogle Scholar
  114. Leibowitz SF (1989) Hypothalamic neuropeptide Y, galanin, and amines. Concepts of coexistence in relation to feeding behavior. Ann N Y Acad Sci 575:221–233PubMedCrossRefGoogle Scholar
  115. Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374PubMedCrossRefGoogle Scholar
  116. Lin CS, Lu SM, Schmechel DE (1986) Glutamic acid decarboxylase and somatostatin immunoreactivities in rat visual cortex. J Comp Neurol 244:369–383PubMedCrossRefGoogle Scholar
  117. Liposits Z, Reid JJ, Negro-Vilar A, Merchenthaler I (1995) Sexual dimorphism in copackaging of luteinizing hormone-releasing hormone and galanin into neurosecretory vesicles of hypophysiotropic neurons: estrogen dependency. Endocrinology 136:1987–1992PubMedCrossRefGoogle Scholar
  118. Liu Y, Waites C, Krantz D, Tan P, Edwards RH (1996) Molecular analysis of neurotransmitter transport into secretory vesicles. Cold Spring Harb Symp Quant Biol 61:747–758PubMedGoogle Scholar
  119. Lossi L, Bottarelli L, Candusso ME, Leiter AB, Rindi G, Merighi A (2004) Transient expression of secretin in serotoninergic neurons of mouse brain during development. Eur J Neurosci 20:3259–3269PubMedCrossRefGoogle Scholar
  120. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7:126–136PubMedCrossRefGoogle Scholar
  121. Lundberg JM (1996) Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol Rev 48:113–178PubMedGoogle Scholar
  122. Ma W, Bisby MA (1998) Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury. Eur J Neurosci 10:2388–2399PubMedCrossRefGoogle Scholar
  123. Maggi CA, Santicioli P, Geppetti P, Patacchini R, Frilli S, Astolfi M, Fusco B, Meli A (1988) Simultaneous release of substance P- and calcitonin gene-related peptide (CGRP)-like immunoreactivity from isolated muscle of the guinea pig urinary bladder. Neurosci Lett 87:163–167PubMedCrossRefGoogle Scholar
  124. Malcangio M, Bowery NG (1999) Peptide autoreceptors: does an autoreceptor for substance P exist? Trends Pharmacol Sci 20:405–407PubMedCrossRefGoogle Scholar
  125. Mantyh PW, Allen CJ, Ghilardi JR, Rogers SD, Mantyh CR, Liu H, Basbaum AI, Vigna SR, Maggio JE (1995) Rapid endocytosis of a G protein-coupled receptor: substance P-evoked internalization of its receptor in the rat striatum in vivo. Proc Natl Acad Sci USA 92:2622–2626PubMedCrossRefGoogle Scholar
  126. Marco N, Thirion A, Mons G, Bougault I, Le FG, Soubrie P, Steinberg R (1998) Activation of dopaminergic and cholinergic neurotransmission by tachykinin NK3 receptor stimulation: an in vivo microdialysis approach in guinea pig. Neuropeptides 32:481–488PubMedCrossRefGoogle Scholar
  127. Marson L (1989) Evidence for colocalization of substance P and 5-hydroxytryptamine in spinally projecting neurons from the cat medulla oblongata. Neurosci Lett 96:54–59PubMedCrossRefGoogle Scholar
  128. Martinez-Rodriguez R, Martinez-Murillo R (1994) Molecular and cellular aspects of neurotransmission and neuromodulation. Int Rev Cytol 149:217–292PubMedCrossRefGoogle Scholar
  129. Martire M, Pistritto G (1992) Neuropeptide Y interaction with the adrenergic transmission line: a study of its effect on alpha-2 adrenergic receptors. Pharmacol Res 25:203–215PubMedCrossRefGoogle Scholar
  130. Maubert E, Slama A, Ciofi P, Viollet C, Tramu G, Dupouy JP, Epelbaum J (1994) Developmental patterns of somatostatin-receptors and somatostatin-immunoreactivity during early neurogenesis in the rat. Neuroscience 62:317–325PubMedCrossRefGoogle Scholar
  131. Mcdonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 100:53–58PubMedCrossRefGoogle Scholar
  132. Meister B, Hökfelt T (1988) Peptide- and transmitter-containing neurons in the mediobasal hypothalamus and their relation to GABAergic systems: possible roles in control of prolactin and growth hormone secretion. Synapse 2:585–605PubMedCrossRefGoogle Scholar
  133. Melander T, Hökfelt T, Rokaeus A (1986) Distribution of galanin like immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517PubMedCrossRefGoogle Scholar
  134. Mens WB, Witter A, Wimersma Greidanus TB (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res 262:143–149PubMedCrossRefGoogle Scholar
  135. Merighi A (2002) Costorage and coexistence of neuropeptides in the mammalian CNS. Prog Neurobiol 66:161–190PubMedCrossRefGoogle Scholar
  136. Merighi A, Polak JM, Gibson SJ, Gulbenkian S, Valentino KL, Peirone SM (1988) Ultrastructural studies on calcitonin gene-related peptide-, tachykinins- and somatostatin-immunoreactive neurones in rat dorsal root ganglia: evidence for the colocalisation of different peptides in single secretory granules. Cell Tissue Res 254:101–109PubMedCrossRefGoogle Scholar
  137. Merighi A, Polak JM, Fumagalli G, Theodosis DT (1989) Ultrastructural localisation of neuropeptides and GABA in the rat dorsal horn: a comparison of different immunogold labelling techniques. J Histochem Cytochem 37:529–540PubMedGoogle Scholar
  138. Merighi A, Polak JM, Theodosis DT (1991) Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn with special reference to the co-localization of glutamate, substance P and calcitonin gene-related peptide. Neuroscience 40:67–80PubMedCrossRefGoogle Scholar
  139. Merighi A, Cruz F, Coimbra A (1992) Immunocytochemical staining of neuropeptides in terminal arborization of primary afferent fibers anterogradely labeled and identified at light and electron microscopic levels. J Neurosci Meth 42:105–113CrossRefGoogle Scholar
  140. Mezey E, Kiss JZ (1991) Coexpression of vasopressin and oxytocin in hypothalamic supraoptic neurons of lactating rats. Endocrinology 129:1814–1820PubMedCrossRefGoogle Scholar
  141. Mijnster MJ, Raimundo AG, Koskuba K, Klop H, Docter GJ, Groenewegen HJ, Voorn P (1997) Regional and cellular distribution of serotonin 5-hydroxytryptamine2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat. J Comp Neurol 389:1–11PubMedCrossRefGoogle Scholar
  142. Miller MA, Kolb PE, Planas B, Raskind MA (1998) Few cholinergic neurons in the rat basal forebrain coexpress galanin messenger RNA. J Comp Neurol 391:248–258PubMedCrossRefGoogle Scholar
  143. Millhorn DE, Hökfelt T, Verhofstad AA, Terenius L (1989) Individual cells in the raphe nuclei of the medulla oblongata in rat that contain immunoreactivities for both serotonin and enkephalin project to the spinal cord. Exp Brain Res 75:536–542PubMedCrossRefGoogle Scholar
  144. Mondal MS, Nakazato M, Matsukura S (2000) Orexins (hypocretins): novel hypothalamic peptides with divergent functions. Biochem Cell Biol 78:299–305PubMedCrossRefGoogle Scholar
  145. Monks DA, Vanston CM, Watson NV (1999) Direct androgenic regulation of calcitonin gene-related peptide expression in motoneurons of rats with mosaic androgen insensitivity. J Neurosci 19:5597–5601PubMedGoogle Scholar
  146. Mutt V (1979) Some contributions to the chemistry of the gastrointestinal hormones. Fed Proc 38:2309–2314PubMedGoogle Scholar
  147. Mutt V (1980a) Chemistry, isolation and purification of gastrointestinal hormones. Biochem Soc Trans 8:11–14Google Scholar
  148. Mutt V (1980b) Cholecystokinin: isolation, structure and functions. In: Glass GBJ (ed) Gastrointestinal hormones. Raven, New York, pp 85–126Google Scholar
  149. Nicoll RA, Malenka RC (1999) Leaky synapses. Neuron 23:197–198PubMedCrossRefGoogle Scholar
  150. Nicoll RA, Schenker C, Leeman SE (1980) Substance P as a transmitter candidate. Annu Rev Neurosci 3:227–268PubMedCrossRefGoogle Scholar
  151. Nitsch R, Leranth C (1994) Substance P-containing hypothalamic afferents to the monkey hippocampus: an immunocytochemical, tracing, and coexistence study. Exp Brain Res 101:231–240PubMedCrossRefGoogle Scholar
  152. Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154PubMedCrossRefGoogle Scholar
  153. Ohno K, Takeda N, Yamano M, Matsunaga T, Tohyama M (1991) Coexistence of acetylcholine and calcitonin gene-related peptide in the vestibular efferent neurons in the rat. Brain Res 566:103–107PubMedCrossRefGoogle Scholar
  154. Okuda-Ashitaka E, Ito S (2000) Nocistatin: a novel neuropeptide encoded by the gene for the nociceptin/orphanin FQ precursor. Peptides 21:1101–1109PubMedCrossRefGoogle Scholar
  155. Pelletier G, Steinbusch HWM, Verhofstad AAJ (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature 293:71–72PubMedCrossRefGoogle Scholar
  156. Penny GR, Afsharpour S, Kitai ST (1986) The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: evidence for partial population overlap. Neuroscience 17:1011–1045PubMedCrossRefGoogle Scholar
  157. Peters A, Palay SL, Webster H deF (1976) The fine structure of the nervous system. Saunders, PhiladelphiaGoogle Scholar
  158. Polak JM, Bloom SR (1984) Regulatory peptides—the distribution of two newly discovered peptides: PHI and NPY. Peptides 5:79–89PubMedCrossRefGoogle Scholar
  159. Pow DV, Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32:435–439PubMedCrossRefGoogle Scholar
  160. Rahman MA, Ashton AC, Meunier FA, Davletov BA, Dolly JO, Ushkaryov YA (1999) Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca2+ and is mediated by latrophilin, G proteins and phospholipase C. Philos Trans R Soc Lond Biol 354:379–386PubMedCrossRefGoogle Scholar
  161. Reimer RJ, Fon EA, Edwards RH (1998) Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr Opin Neurobiol 8:405–412PubMedCrossRefGoogle Scholar
  162. Renda T, D’Este L, Fasolo A, Lazarus LH, Erspamer V (1989) Brain-gut-skin peptides: an update overview. Arch Histol Cytol 52S:317–323CrossRefGoogle Scholar
  163. Ribeiro-Da-Silva A (1995) Ultrastructural features of the colocalization of calcitonin gene related peptide with substance P or somatostatin in the dorsal horn of the spinal cord. Can J Physiol Pharmacol 73:940–944PubMedGoogle Scholar
  164. Ribeiro-Da-Silva A, Hökfelt T (2000) Neuroanatomical localisation of substance P in the CNS and sensory neurons. Neuropeptides 34:256–271PubMedCrossRefGoogle Scholar
  165. Rokaeus A (1987) Galanin: a newly isolated biologically active neuropeptide. Trends Neurosci 10:158–164Google Scholar
  166. Rossier J, Liston D, Patey G, Chaminade M, Foutz AS, Cupo A, Giraud P, Roisin MP, Henry JP, Verbanck P (1983) The enkephalinergic neuron: implications of a polyenkephalin precursor. Cold Spring Harb Symp Quant Biol 48:393–404PubMedGoogle Scholar
  167. Rowan S, Todd AJ, Spike RC (1993) Evidence that neuropeptide Y is present in GABAergic neurons in the superficial dorsal horn of the rat spinal cord. Neuroscience 53:537–545PubMedCrossRefGoogle Scholar
  168. Safieddine S, Prior AM, Eybalin M (1997) Choline acetyltransferase, glutamate decarboxylase, tyrosine hydroxylase, calcitonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rat and guinea-pig. Eur J Neurosci 9:356–367PubMedCrossRefGoogle Scholar
  169. Salio C, Lossi L, Ferrini F, Merighi A (2005) Ultrastructural evidence for a pre- and post-synaptic localization of full length trkB receptors in substantia gelatinosa (lamina II) of rat and mouse spinal cord. Eur J Neurosci 22:1951–1966PubMedCrossRefGoogle Scholar
  170. Saria A, Gamse R, Petermann JB, Fischer JA, Theodorsson-Norheim E, Lundberg JM (1986) Simultaneous release of several tachykinins and calcitonin gene-related peptide from rat spinal cord slices. Neurosci Lett 63:310–314PubMedCrossRefGoogle Scholar
  171. Schlicker E, Morari M (2000) Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides 21:1023–1029PubMedCrossRefGoogle Scholar
  172. Schwartz JP, Epelbaum J (1998) Somatostatin as a neurotrophic factor. Which receptor/second messenger transduction system is involved? Prespect Dev Neurobiol 5:427–435Google Scholar
  173. Simmons DR, Spike RC, Todd AJ (1995) Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci Lett 187:119–122PubMedCrossRefGoogle Scholar
  174. Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546PubMedCrossRefGoogle Scholar
  175. Snider RM, Constantine JW, Lowe JA, III, Longo KP, Lebel WS, Woody HA, Dorzda SF, Desai MC, Vinik FJ, Spencer RW, Hess HJ (1991) A potent non peptide antagonist of the SP (NK-1) receptor. Science 251:435–437PubMedCrossRefGoogle Scholar
  176. Sossin WS, Scheller RH (1991) Biosynthesis and sorting of neuropeptides. Curr Opin Neurobiol 1:79–83PubMedCrossRefGoogle Scholar
  177. Sossin WS, Sweet-Cordero A, Scheller RH (1990) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci USA 87:4845–4848PubMedCrossRefGoogle Scholar
  178. Takano M, Takano Y, Yaksh TL (1993) Release of calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal polypeptide (VIP) from rat spinal cord: modulation by α2 agonists. Peptides 14:371–378PubMedCrossRefGoogle Scholar
  179. Tanaka K, Masu M, Nakanishi S (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4:847–854PubMedCrossRefGoogle Scholar
  180. Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660PubMedCrossRefGoogle Scholar
  181. Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322:738–740PubMedCrossRefGoogle Scholar
  182. Thor KB, Helke CJ (1989) Serotonin and substance P colocalization in medullary projections to the nucleus tractus solitarius: dual-colour immunohistochemistry combined with retrograde tracing. J Chem Neuroanat 2:139–148PubMedGoogle Scholar
  183. Thureson-Klein ÅK, Klein RL, Zhu PC, Kong J-Y (1988) Differential release of transmitters and neuropeptides co-stored in central and peripheral neurons. In: Zimmermann H (ed) Cellular and molecular basis of synaptic transmission. Springer, Berlin Heidelberg New York, pp 171–183Google Scholar
  184. Tsuboi T, Rutter GA (2003) Insulin secretion by “kiss-and-run” exocytosis in clonal pancreatic islet beta-cells. Biochem Soc Trans 31:833–836PubMedCrossRefGoogle Scholar
  185. Vallet PG, Charnay Y, Boura C, Kiss JZ (1991) Colocalization of delta sleep inducing peptide and luteinizing hormone releasing hormone in neurosecretory vesicles in rat median eminence. Neuroendocrinology 53:103–106PubMedCrossRefGoogle Scholar
  186. Vanner S (1994) Corelease of neuropeptides from capsaicin-sensitive afferents dilates submucosal arterioles in guinea pig ileum. Am J Physiol 267:G650–G655PubMedGoogle Scholar
  187. Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hökfelt T (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15:2081–2096PubMedGoogle Scholar
  188. Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM, Nicholls DG (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6:517–524PubMedCrossRefGoogle Scholar
  189. Wang R, Shoenfeld R (1987) Cholecystokinin antagonists. Liss, New YorkGoogle Scholar
  190. Wang TC, Dockray GJ (1999) Lessons from genetically engineered animal models. I. Physiological studies with gastrin in transgenic mice. Am J Physiol 277:G6–G11PubMedGoogle Scholar
  191. Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370:405–414PubMedCrossRefGoogle Scholar
  192. Whitnall MH (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40:573–629PubMedCrossRefGoogle Scholar
  193. Whitnall MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin-A-(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222:1137–1139PubMedCrossRefGoogle Scholar
  194. Whitnall MH, Key S, Ben-Barak Y, Ozato K, Gainer H (1985a) Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J Neurosci 5:98–109Google Scholar
  195. Whitnall MH, Mezey E, Gainer H (1985b) Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317:248–250CrossRefGoogle Scholar
  196. Woolf CJ, Mannion RJ, Neuman S (1998) Null mutations lacking substance: elucidating pain mechanisms by genetic pharmacology. Neuron 20:1063–1066PubMedCrossRefGoogle Scholar
  197. Wouterlood FG, Pothuizen H (2000) Sparse colocalization of somatostatin- and GABA-immunoreactivity in the entorhinal cortex of the rat. Hippocampus 10:77–86PubMedCrossRefGoogle Scholar
  198. Wynick D, Small CJ, Bloom SR, Pachnis V (1998) Targeted disruption of the murine galanin gene. Ann N Y Acad Sci 863:22–47PubMedCrossRefGoogle Scholar
  199. Xu ZQ, Hökfelt T (1997) Expression of galanin and nitric oxide synthase in subpopulations of serotonin neurons of the rat dorsal raphe nucleus. J Chem Neuroanat 13:169–187PubMedCrossRefGoogle Scholar
  200. Yaksh TL (1999) Spinal systems and pain processing: development of novel analgesic drugs with mechanistically defined models. Trends Physiol Sci 20:329–337CrossRefGoogle Scholar
  201. Yamashita A, Shimizu K, Hayashi M (1990) Ontogeny of substance P-immunoreactive structures in the primate cerebral neocortex. Brain Res Dev Brain Res 57:197–207PubMedCrossRefGoogle Scholar
  202. Yan XX, Toth Z, Schultz L, Ribak CE, Baram TZ (1998) Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8:231–243PubMedCrossRefGoogle Scholar
  203. Yang L, Thomas ND, Helke CJ (1996) Characterization of substance P release from the intermediate area of rat thoracic spinal cord. Synapse 23:265–273PubMedCrossRefGoogle Scholar
  204. Yang Y, Ozawa H, Yuri K, Kawata M (2000) Postnatal development of NADPH-diaphorase activity in the rat: the role of nitric oxide in the ontogeny of arginine vasopressin and oxytocin. Endocr J 47:601–613PubMedCrossRefGoogle Scholar
  205. Yew DT, Chan WY (1999) Early appearance of acetylcholinergic, serotoninergic, and peptidergic neurons and fibers in the developing human central nervous system. Microsc Res Tech 45:389–400PubMedCrossRefGoogle Scholar
  206. Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S (1989) Molecular characterization of a functional cDNA for rat substance P receptor. J Biol Chem 264:17649–17652PubMedGoogle Scholar
  207. Zahm DS, Zaborszky L, Alones VE, Heimer L (1985) Evidence for the coexistence of glutamate decarboxylase and Met-enkephalin immunoreactivities in axon terminals of rat ventral pallidum. Brain Res 325:317–321PubMedCrossRefGoogle Scholar
  208. Zee EA van der, Benoit R, Strosberg AD, Luiten PG (1991) Coexistence of muscarinic acetylcholine receptors and somatostatin in nonpyramidal neurons of the rat dorsal hippocampus. Brain Res Bull 26:343–351PubMedCrossRefGoogle Scholar
  209. Zhang X, Nicholas AP, Hökfelt T (1993) Ultrastructural studies on peptides in the dorsal horn of the spinal cord. I. Co-existence of galanin with other peptides in primary afferents in normal rats. Neuroscience 57:365–384PubMedCrossRefGoogle Scholar
  210. Zhu PC, Thureson-Klein ÅK, Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 19:43–54PubMedCrossRefGoogle Scholar
  211. Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, Konig M, Palkovits M, Mezey E (1998) Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci USA 95:2630–2635PubMedCrossRefGoogle Scholar
  212. Zoli M, Agnati LF, Jansson A, Fuxe K, Syková E (1999) Volume transmission in the CNS and its relevance for neurophyschopharmacology. Trends Physiol Sci 20:142–150CrossRefGoogle Scholar
  213. Zsarnovszky A, Horvath TL, Naftolin F, Leranth C (2000) AMPA receptors colocalize with neuropeptide-Y- and galanin-containing, but not with dopamine neurons of the female rat arcuate nucleus: a semiquantitative immunohistochemical colocalization study. Exp Brain Res 133:532–537PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Chiara Salio
    • 1
  • Laura Lossi
    • 1
  • Francesco Ferrini
    • 1
  • Adalberto Merighi
    • 1
  1. 1.Dipartimento di Morfofisiologia Veterinaria and Rita Levi Montalcini Center for Brain RepairGrugliasco (TO)Italy

Personalised recommendations