Cell and Tissue Research

, Volume 326, Issue 2, pp 517–533 | Cite as

GABAB receptors and synaptic modulation



GABAB receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABAB receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABAB receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABAB receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders.


GABA G-protein-coupled receptor Metabotropic Dendritic spine Synaptic plasticity 



I thank D. Zunner, C. Deschermeier, T. Bartoi and G. Köhr for critically reading the manuscript.


  1. Balasubramanian S, Teissere JA, Raju DV, Hall RA (2004) Hetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J Biol Chem 279:18840–18850PubMedCrossRefGoogle Scholar
  2. Becherer U, Rettig J (2006) Vesicle pools, docking, priming, and release. Cell Tissue Res (DOI 10.1007/s00441-006-0243-z; this issue)
  3. Benke D, Honer M, Michel C, Bettler B, Möhler H (1999) Gamma-aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. J Biol Chem 274:27323–27330PubMedCrossRefGoogle Scholar
  4. Bettler B, Tiao JY (2006) Molecular diversity, trafficking and subcellular localization of GABA(B) receptors. Pharmacol Ther 110:533–543PubMedCrossRefGoogle Scholar
  5. Bettler B, Kaupmann K, Bowery N (1998) GABAB receptors: drugs meet clones. Curr Opin Neurobiol 8:345–350PubMedCrossRefGoogle Scholar
  6. Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84:835–867PubMedCrossRefGoogle Scholar
  7. Billinton A, Ige AO, Bolam JP, White JH, Marshall FH, Emson PC (2001) Advances in the molecular understanding of GABA(B) receptors. Trends Neurosci 24:277–282PubMedCrossRefGoogle Scholar
  8. Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L (2004) The heptahelical domain of GABA(B2) is activated directly by CGP7930, a positive allosteric modulator of the GABA(B) receptor. J Biol Chem 279:29085–29091PubMedCrossRefGoogle Scholar
  9. Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RA, White JH, Barlow PN (2004) Structural analysis of the complement control protein (CCP) modules of GABA(B) receptor 1a: only one of the two CCP modules is compactly folded. J Biol Chem 279:48292–48306PubMedCrossRefGoogle Scholar
  10. Bonanno G, Raiteri M (1993) Multiple GABAB receptors. Trends Pharmacol Sci 14:259–261PubMedCrossRefGoogle Scholar
  11. Bonanno G, Fassio A, Schmid G, Severi P, Sala R, Raiteri M (1997) Pharmacologically distinct GABAB receptors that mediate inhibition of GABA and glutamate release in human neocortex. Br J Pharmacol 120:60–64PubMedCrossRefGoogle Scholar
  12. Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2:274–286PubMedCrossRefGoogle Scholar
  13. Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147PubMedGoogle Scholar
  14. Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6:37–43PubMedCrossRefGoogle Scholar
  15. Bowery NG, Smart TG (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 147 Suppl 1:S109–119PubMedCrossRefGoogle Scholar
  16. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980) (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94PubMedCrossRefGoogle Scholar
  17. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264PubMedCrossRefGoogle Scholar
  18. Brock C, Boudier L, Maurel D, Blahos J, Pin JP (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 16:5572–5578PubMedCrossRefGoogle Scholar
  19. Brody DL, Yue DT (2000) Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 20:889–898PubMedGoogle Scholar
  20. Brogden RN, Speight TM, Avery GS (1974) Baclofen: a preliminary report of its pharmacological properties and therapeutic efficacy in spasticity. Drugs 8:1–14PubMedCrossRefGoogle Scholar
  21. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297PubMedGoogle Scholar
  22. Calver AR, Robbins MJ, Cosio C, Rice SQ, Babbs AJ, Hirst WD, Boyfield I, Wood MD, Russell RB, Price GW, Couve A, Moss SJ, Pangalos MN (2001) The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J Neurosci 21:1203–1210PubMedGoogle Scholar
  23. Calver AR, Davies CH, Pangalos M (2002) GABA(B) receptors: from monogamy to promiscuity. Neurosignals 11:299–314PubMedCrossRefGoogle Scholar
  24. Calver AR, Michalovich D, Testa TT, Robbins MJ, Jaillard C, Hill J, Szekeres PG, Charles KJ, Jourdain S, Holbrook JD, Boyfield I, Patel N, Medhurst AD, Pangalos MN (2003) Molecular cloning and characterisation of a novel GABAB-related G-protein coupled receptor. Brain Res Mol Brain Res 110:305–317PubMedCrossRefGoogle Scholar
  25. Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24:214–223PubMedCrossRefGoogle Scholar
  26. Cousins MS, Roberts DC, Wit H de (2002) GABA(B) receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol Depend 65:209–220PubMedCrossRefGoogle Scholar
  27. Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ (1998) Intracellular retention of recombinant GABAB receptors. J Biol Chem 273:26361–26367PubMedCrossRefGoogle Scholar
  28. Couve A, Kittler JT, Uren JM, Calver AR, Pangalos MN, Walsh FS, Moss SJ (2001) Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Mol Cell Neurosci 17:317–328PubMedCrossRefGoogle Scholar
  29. Couve A, Thomas P, Calver AR, Hirst WD, Pangalos MN, Walsh FS, Smart TG, Moss SJ (2002) Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling. Nat Neurosci 5:415–424PubMedGoogle Scholar
  30. Couve A, Restituito S, Brandon JM, Charles KJ, Bawagan H, Freeman KB, Pangalos MN, Calver AR, Moss SJ (2004) Marlin-1, a novel RNA-binding protein associates with GABA receptors. J Biol Chem 279:13934–13943PubMedCrossRefGoogle Scholar
  31. Cruz HG, Ivanova T, Lunn ML, Stoffel M, Slesinger PA, Lüscher C (2004) Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci 7:153–159PubMedCrossRefGoogle Scholar
  32. Cryan JF, Kaupmann K (2005) Don’t worry ’B’ happy!: a role for GABA(B) receptors in anxiety and depression. Trends Pharmacol Sci 26:36–43PubMedCrossRefGoogle Scholar
  33. Cryan JF, Kelly PH, Chaperon F, Gentsch C, Mombereau C, Lingenhoehl K, Froestl W, Bettler B, Kaupmann K, Spooren WP (2004) Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther 310:952–963PubMedCrossRefGoogle Scholar
  34. Cunningham MD, Enna SJ (1996) Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res 720:220–224PubMedCrossRefGoogle Scholar
  35. Davies CH, Starkey SJ, Pozza MF, Collingridge GL (1991) GABA autoreceptors regulate the induction of LTP. Nature 349:609–611PubMedCrossRefGoogle Scholar
  36. Deriu D, Gassmann M, Firbank S, Ristig D, Lampert C, Mosbacher J, Froestl W, Kaupmann K, Bettler B, Grutter MG (2005) Determination of the minimal functional ligand-binding domain of the GABAB1b receptor. Biochem J 386:423–431PubMedCrossRefGoogle Scholar
  37. Dittman JS, Regehr WG (1996) Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci 16:1623–1633PubMedGoogle Scholar
  38. Dittman JS, Regehr WG (1997) Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse. J Neurosci 17:9048–9059PubMedGoogle Scholar
  39. Dityatev A, Schachner M (2006) The extracellular matrix and synapses. Cell Tissue Res (DOI 10.1007/s00441-006-0217-1; this issue)
  40. Dulac C (2000) Sensory coding of pheromone signals in mammals. Curr Opin Neurobiol 10:511–518PubMedCrossRefGoogle Scholar
  41. Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317:519–535Google Scholar
  42. Dutar P, Nicoll RA (1988) A physiological role for GABAB receptors in the central nervous system. Nature 332:156–158PubMedCrossRefGoogle Scholar
  43. Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin JP, Prezeau L (2002) A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem 277:3236–3241PubMedCrossRefGoogle Scholar
  44. Fairfax BP, Pitcher JA, Scott MG, Calver AR, Pangalos MN, Moss SJ, Couve A (2004) Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J Biol Chem 279:12565–12573PubMedCrossRefGoogle Scholar
  45. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res (DOI 10.1007/s00441-006-0266-5; this issue)
  46. Filippov AK, Couve A, Pangalos MN, Walsh FS, Brown DA, Moss SJ (2000) Heteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits Ca(2+) current in sympathetic neurons. J Neurosci 20:2867–2874PubMedGoogle Scholar
  47. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128PubMedCrossRefGoogle Scholar
  48. Fritschy JM, Meskenaite V, Weinmann O, Honer M, Benke D, Möhler H (1999) GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11:761–768PubMedCrossRefGoogle Scholar
  49. Fritschy JM, Sidler C, Parpan F, Gassmann M, Kaupmann K, Bettler B, Benke D (2004) Independent maturation of the GABA(B) receptor subunits GABA(B1) and GABA(B2) during postnatal development in rodent brain. J Comp Neurol 477:235–252PubMedCrossRefGoogle Scholar
  50. Froestl W, Mickel SJ, Sprecher G von, Diel PJ, Hall RG, Maier L, Strub D, Melillo V, Baumann PA, Bernasconi R, et al (1995) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J Med Chem 38:3313–3331PubMedCrossRefGoogle Scholar
  51. Froestl W, Gallagher M, Jenkins H, Madrid A, Melcher T, Teichman S, Mondadori CG, Pearlman R (2004) SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol 68:1479–1487PubMedCrossRefGoogle Scholar
  52. Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274:13362–13369PubMedCrossRefGoogle Scholar
  53. Galvez T, Prezeau L, Milioti G, Franek M, Joly C, Froestl W, Bettler B, Bertrand HO, Blahos J, Pin JP (2000a) Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 275:41166–41174PubMedCrossRefGoogle Scholar
  54. Galvez T, Urwyler S, Prezeau L, Mosbacher J, Joly C, Malitschek B, Heid J, Brabet I, Froestl W, Bettler B, Kaupmann K, Pin JP (2000b) Ca(2+) requirement for high-affinity gamma-aminobutyric acid (GABA) binding at GABA(B) receptors: involvement of serine 269 of the GABA(B)R1 subunit. Mol Pharmacol 57:419–426PubMedGoogle Scholar
  55. Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prezeau L, Pin JP (2001) Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 20:2152–2159PubMedCrossRefGoogle Scholar
  56. Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Muller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton AL, Putten H van der, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy JM, Luthi A, Kaupmann K, Bettler B (2004a) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24:6086–6097PubMedCrossRefGoogle Scholar
  57. Gassmann M, Vigot R, Shaban H, Barbieri S, Brauner-Osborne H, Lüthi A, Cryan JF, Kaupmann K, Bettler B (2004b) Genetic dissection of GABAB receptor function in mice. Soc Neurosci Abstr 32:959.3Google Scholar
  58. Gassmann M, Haller C, Stoll Y, Aziz SA, Biermann B, Mosbacher J, Kaupmann K, Bettler B (2005) The RXR-type endoplasmic reticulum-retention/retrieval signal of GABAB(1) requires distant spacing from the membrane to function. Mol Pharmacol 68:137–144PubMedGoogle Scholar
  59. George SR, O’Dowd BF, Lee SP (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1:808–820PubMedCrossRefGoogle Scholar
  60. Gerber U, Gähwiler BH (1994) GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J Neurophysiol 72:2360–2367PubMedGoogle Scholar
  61. Gonchar Y, Pang L, Malitschek B, Bettler B, Burkhalter A (2001) Subcellular localization of GABA(B) receptor subunits in rat visual cortex. J Comp Neurol 431:182–197PubMedCrossRefGoogle Scholar
  62. Groc L, Choquet D (2006) AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res (DOI 10.1007/s00441-006-00254-9; this issue)
  63. Grünewald S, Schupp BJ, Ikeda SR, Kuner R, Steigerwald F, Kornau HC, Köhr G (2002) Importance of the gamma-aminobutyric acid(B) receptor C-termini for G-protein coupling. Mol Pharmacol 61:1070–1080PubMedCrossRefGoogle Scholar
  64. Haller C, Casanova E, Muller M, Vacher CM, Vigot R, Doll T, Barbieri S, Gassmann M, Bettler B (2004) Floxed allele for conditional inactivation of the GABAB(1) gene. Genesis 40:125–130PubMedCrossRefGoogle Scholar
  65. Harayama N, Shibuya I, Tanaka K, Kabashima N, Ueta Y, Yamashita H (1998) Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurones. J Physiol (Lond) 509:371–383CrossRefGoogle Scholar
  66. Havlickova M, Prezeau L, Duthey B, Bettler B, Pin JP, Blahos J (2002) The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Mol Pharmacol 62:343–350PubMedCrossRefGoogle Scholar
  67. Helm KA, Haberman RP, Dean SL, Hoyt EC, Melcher T, Lund PK, Gallagher M (2005) GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 48:956–964PubMedCrossRefGoogle Scholar
  68. Herman RM, D’Luzansky SC, Ippolito R (1992) Intrathecal baclofen suppresses central pain in patients with spinal lesions. A pilot study. Clin J Pain 8:338–345PubMedCrossRefGoogle Scholar
  69. Hill DR (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br J Pharmacol 84:249–257PubMedGoogle Scholar
  70. Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature 290:149–152PubMedCrossRefGoogle Scholar
  71. Hirono M, Yoshioka T, Konishi S (2001) GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 4:1207–1216PubMedCrossRefGoogle Scholar
  72. Hosford DA, Clark S, Cao Z, Wilson WA Jr, Lin FH, Morrisett RA, Huin A (1992) The role of GABAB receptor activation in absence seizures of lethargic (l h/l h) mice. Science 257:398–401PubMedCrossRefGoogle Scholar
  73. Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY (2005) Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 123:105–118PubMedCrossRefGoogle Scholar
  74. Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 380:255–258PubMedCrossRefGoogle Scholar
  75. Isaacson JS (2000) Spillover in the spotlight. Curr Biol 10:R475–R477PubMedCrossRefGoogle Scholar
  76. Isaacson JS, Solis JM, Nicoll RA (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10:165–175PubMedCrossRefGoogle Scholar
  77. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679PubMedCrossRefGoogle Scholar
  78. Kammerer RA, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J (1999) Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry 38:13263–13269PubMedCrossRefGoogle Scholar
  79. Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246PubMedCrossRefGoogle Scholar
  80. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687PubMedCrossRefGoogle Scholar
  81. Kerr DI, Ong J, Prager RH, Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405:150–154PubMedCrossRefGoogle Scholar
  82. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781PubMedCrossRefGoogle Scholar
  83. Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, Nakajima Y, Nakanishi S (2002) Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci 22:1280–1289PubMedGoogle Scholar
  84. Kniazeff J, Galvez T, Labesse G, Pin JP (2002) No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 22:7352–7361PubMedGoogle Scholar
  85. Köhr G (2006) NMDA receptor function: Subunit composition versusspatial distribution. Cell Tissue Res (DOI 10.1007/s00441-006-0273-6; this issue)
  86. Kofuji P, Davidson N, Lester HA (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci USA 92:6542–6546PubMedCrossRefGoogle Scholar
  87. Kornau HC, Seeburg PH, Kennedy MB (1997) Interaction of ion channels and receptors with PDZ domain proteins. Curr Opin Neurobiol 7:368–373PubMedCrossRefGoogle Scholar
  88. Koyrakh L, Lujan R, Colon J, Karschin C, Kurachi Y, Karschin A, Wickman K (2005) Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci 25:11468–11478PubMedCrossRefGoogle Scholar
  89. Kubo Y, Tateyama M (2005) Towards a view of functioning dimeric metabotropic receptors. Curr Opin Neurobiol 15:289–295PubMedCrossRefGoogle Scholar
  90. Kuhn SA, Landeghem FK van, Zacharias R, Farber K, Rappert A, Pavlovic S, Hoffmann A, Nolte C, Kettenmann H (2004) Microglia express GABA(B) receptors to modulate interleukin release. Mol Cell Neurosci 25:312–322PubMedCrossRefGoogle Scholar
  91. Kulik A, Nakadate K, Nyiri G, Notomi T, Malitschek B, Bettler B, Shigemoto R (2002) Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 15:291–307PubMedCrossRefGoogle Scholar
  92. Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J Neurosci 23:11026–11035PubMedGoogle Scholar
  93. Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R (2006) Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 26:4289–4297PubMedCrossRefGoogle Scholar
  94. Kuner R, Köhr G, Grünewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283:74–77PubMedCrossRefGoogle Scholar
  95. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407:971–977PubMedCrossRefGoogle Scholar
  96. Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277:46010–46019PubMedCrossRefGoogle Scholar
  97. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662PubMedCrossRefGoogle Scholar
  98. Liu J, Maurel D, Etzol S, Brabet I, Ansanay H, Pin JP, Rondard P (2004) Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem 279:15824–15830PubMedCrossRefGoogle Scholar
  99. Lopez-Bendito G, Shigemoto R, Kulik A, Paulsen O, Fairen A, Lujan R (2002) Expression and distribution of metabotropic GABA receptor subtypes GABABR1 and GABABR2 during rat neocortical development. Eur J Neurosci 15:1766–1778PubMedCrossRefGoogle Scholar
  100. Lopez-Bendito G, Lujan R, Shigemoto R, Ganter P, Paulsen O, Molnar Z (2003) Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13:932–942PubMedCrossRefGoogle Scholar
  101. Lopez-Bendito G, Shigemoto R, Kulik A, Vida I, Fairen A, Lujan R (2004) Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14:836–848PubMedCrossRefGoogle Scholar
  102. Lujan R, Shigemoto R (2006) Localization of metabotropic GABA receptor subunits GABA and GABA relative to synaptic sites in the rat developing cerebellum. Eur J Neurosci 23:1479–1490PubMedCrossRefGoogle Scholar
  103. Lujan R, Shigemoto R, Kulik A, Juiz JM (2004) Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. J Comp Neurol 475:36–46PubMedCrossRefGoogle Scholar
  104. Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695PubMedCrossRefGoogle Scholar
  105. Malitschek B, Schweizer C, Keir M, Heid J, Froestl W, Mosbacher J, Kuhn R, Henley J, Joly C, Pin JP, Kaupmann K, Bettler B (1999) The N-terminal domain of gamma-aminobutyric acid(B) receptors is sufficient to specify agonist and antagonist binding. Mol Pharmacol 56:448–454PubMedGoogle Scholar
  106. Marescaux C, Vergnes M, Liu Z, Depaulis A, Bernasconi R (1992) GABAB receptor involvement in the control of genetic absence seizures in rats. Epilepsy Res Suppl 9:131–139PubMedGoogle Scholar
  107. Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI (1999) Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 405:299–321PubMedCrossRefGoogle Scholar
  108. Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27:97–106PubMedCrossRefGoogle Scholar
  109. Margeta-Mitrovic M, Jan YN, Jan LY (2001a) Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc Natl Acad Sci USA 98:14649–14654PubMedCrossRefGoogle Scholar
  110. Margeta-Mitrovic M, Jan YN, Jan LY (2001b) Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc Natl Acad Sci USA 98:14643–14648PubMedCrossRefGoogle Scholar
  111. Marshall FH (2005) Is the GABA B heterodimer a good drug target? J Mol Neurosci 26:169–176PubMedCrossRefGoogle Scholar
  112. Marshall FH, Jones KA, Kaupmann K, Bettler B (1999) GABAB receptors—the first 7TM heterodimers. Trends Pharmacol Sci 20:396–399PubMedCrossRefGoogle Scholar
  113. Martin SC, Russek SJ, Farb DH (1999) Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Mol Cell Neurosci 13:180–191PubMedCrossRefGoogle Scholar
  114. Michelsen K, Yuan H, Schwappach B (2005) Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep 6:717–722PubMedCrossRefGoogle Scholar
  115. Milligan G, White JH (2001) Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol Sci 22:513–518PubMedCrossRefGoogle Scholar
  116. Mintz IM, Bean BP (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10:889–898PubMedCrossRefGoogle Scholar
  117. Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46:423–462PubMedCrossRefGoogle Scholar
  118. Möhler H (2006) GABAA receptor diversity and pharmacology . Cell Tissue Res (DOI 10.1007/s00441-006-0284-3; this issue)
  119. Möhler H, Fritschy JM (1999) GABAB receptors make it to the top—as dimers. Trends Pharmacol Sci 20:87–89PubMedCrossRefGoogle Scholar
  120. Mombereau C, Kaupmann K, Froestl W, Sansig G, Putten H van der, Cryan JF (2004a) Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29:1050–1062PubMedCrossRefGoogle Scholar
  121. Mombereau C, Kaupmann K, Putten H van der, Cryan JF (2004b) Altered response to benzodiazepine anxiolytics in mice lacking GABA B(1) receptors. Eur J Pharmacol 497:119–120PubMedCrossRefGoogle Scholar
  122. Mombereau C, Kaupmann K, Gassmann M, Bettler B, Putten H van der, Cryan JF (2005) Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. Neuroreport 16:307–310PubMedCrossRefGoogle Scholar
  123. Mondadori C, Jaekel J, Preiswerk G (1993) CGP 36742: the first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. Behav Neural Biol 60:62–68PubMedCrossRefGoogle Scholar
  124. Mott DD, Lewis DV (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252:1718–1720PubMedCrossRefGoogle Scholar
  125. Mutneja M, Berton F, Suen KF, Lüscher C, Slesinger PA (2005) Endogenous RGS proteins enhance acute desensitization of GABA(B) receptor-activated GIRK currents in HEK-293T cells. Pflugers Arch 450:61–73PubMedCrossRefGoogle Scholar
  126. Nehring RB, Horikawa HP, El Far O, Kneussel M, Brandstatter JH, Stamm S, Wischmeyer E, Betz H, Karschin A (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem 275:35185–35191PubMedCrossRefGoogle Scholar
  127. Newberry NR, Nicoll RA (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308:450–452PubMedCrossRefGoogle Scholar
  128. Newberry NR, Nicoll RA (1985) Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol (Lond) 360:161–185Google Scholar
  129. Ng GY, Clark J, Coulombe N, Ethier N, Hebert TE, Sullivan R, Kargman S, Chateauneuf A, Tsukamoto N, McDonald T, Whiting P, Mezey E, Johnson MP, Liu Q, Kolakowski LF Jr, Evans JF, Bonner TI, O’Neill GP (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 274:7607–7610PubMedCrossRefGoogle Scholar
  130. Otis TS, De Koninck Y, Mody I (1993) Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J Physiol (Lond) 463:391–407Google Scholar
  131. Otmakhova NA, Lisman JE (2004) Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: a brake on the NMDA response. J Neurophysiol 92:2027–2039PubMedCrossRefGoogle Scholar
  132. Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D, Ristig D, Schuler V, Meigel I, Lampert C, Stein T, Prezeau L, Blahos J, Pin J, Froestl W, Kuhn R, Heid J, Kaupmann K, Bettler B (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21:1189–1202PubMedGoogle Scholar
  133. Panzanelli P, Lopez-Bendito G, Lujan R, Sassoe-Pognetto M (2004) Localization and developmental expression of GABA(B) receptors in the rat olfactory bulb. J Neurocytol 33:87–99PubMedCrossRefGoogle Scholar
  134. Perez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABA(B1b) isoform mediates long-lasting inhibition of dendritic Ca(2+) spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616PubMedCrossRefGoogle Scholar
  135. Perroy J, Adam L, Qanbar R, Chenier S, Bouvier M (2003) Phosphorylation-independent desensitization of GABA(B) receptor by GRK4. EMBO J 22:3816–3824PubMedCrossRefGoogle Scholar
  136. Pfrieger FW, Gottmann K, Lux HD (1994) Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron 12:97–107PubMedCrossRefGoogle Scholar
  137. Pin JP, Parmentier ML, Prezeau L (2001) Positive allosteric modulators for gamma-aminobutyric acid(B) receptors open new routes for the development of drugs targeting family 3 G-protein-coupled receptors. Mol Pharmacol 60:881–884PubMedGoogle Scholar
  138. Pin JP, Kniazeff J, Liu J, Binet V, Goudet C, Rondard P, Prezeau L (2005) Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J 272:2947–2955PubMedCrossRefGoogle Scholar
  139. Poncer JC, McKinney RA, Gähwiler BH, Thompson SM (2000) Differential control of GABA release at synapses from distinct interneurons in rat hippocampus. J Physiol (Lond) 528:123–130CrossRefGoogle Scholar
  140. Pranzatelli MR (1992) The neurobiology of the opsoclonus-myoclonus syndrome. Clin Neuropharmacol 15:186–228PubMedCrossRefGoogle Scholar
  141. Priest CA, Puche AC (2004) GABAB receptor expression and function in olfactory receptor neuron axon growth. J Neurobiol 60:154–165PubMedCrossRefGoogle Scholar
  142. Prosser HM, Gill CH, Hirst WD, Grau E, Robbins M, Calver A, Soffin EM, Farmer CE, Lanneau C, Gray J, Schenck E, Warmerdam BS, Clapham C, Reavill C, Rogers DC, Stean T, Upton N, Humphreys K, Randall A, Geppert M, Davies CH, Pangalos MN (2001) Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol Cell Neurosci 17:1059–1070PubMedCrossRefGoogle Scholar
  143. Queva C, Bremner-Danielsen M, Edlund A, Ekstrand AJ, Elg S, Erickson S, Johansson T, Lehmann A, Mattsson JP (2003) Effects of GABA agonists on body temperature regulation in GABA(B(1))-/- mice. Br J Pharmacol 140:315–322PubMedCrossRefGoogle Scholar
  144. Restituito S, Couve A, Bawagan H, Jourdain S, Pangalos MN, Calver AR, Freeman KB, Moss SJ (2005) Multiple motifs regulate the trafficking of GABA(B) receptors at distinct checkpoints within the secretory pathway. Mol Cell Neurosci 28:747–756PubMedCrossRefGoogle Scholar
  145. Robbins MJ, Calver AR, Filippov AK, Hirst WD, Russell RB, Wood MD, Nasir S, Couve A, Brown DA, Moss SJ, Pangalos MN (2001) GABA(B2) is essential for G-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 21:8043–8052PubMedGoogle Scholar
  146. Romano C, Yang WL, O’Malley KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616PubMedCrossRefGoogle Scholar
  147. Saghatelyan AK, Snapyan M, Gorissen S, Meigel I, Mosbacher J, Kaupmann K, Bettler B, Kornilov AV, Nifantiev NE, Sakanyan V, Schachner M, Dityatev A (2003) Recognition molecule associated carbohydrate inhibits postsynaptic GABA(B) receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol Cell Neurosci 24:271–282PubMedCrossRefGoogle Scholar
  148. Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 424:775–778PubMedCrossRefGoogle Scholar
  149. Sauter K, Grampp T, Fritschy JM, Kaupmann K, Bettler B, Möhler H, Benke D (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors. J Biol Chem 280:33566–33572PubMedCrossRefGoogle Scholar
  150. Scanziani M (2000) GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity. Neuron 25:673–681PubMedCrossRefGoogle Scholar
  151. Schneggenburger R, Forsythe ID (2006) Calyx of held. Cell Tissue Res (DOI 10.1007/s00441-006-0272-7; this issue)
  152. Scholz KP, Miller RJ (1991) GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. J Physiol (Lond) 444:669–686Google Scholar
  153. Schuler V, Lüscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Kaslin E, Korn R, Bischoff S, Kaupmann K, Putten H van der, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31:47–58PubMedCrossRefGoogle Scholar
  154. Scott K (2004) The sweet and the bitter of mammalian taste. Curr Opin Neurobiol 14:423–427PubMedCrossRefGoogle Scholar
  155. Simonds WF (1999) G protein regulation of adenylate cyclase. Trends Pharmacol Sci 20:66–73PubMedCrossRefGoogle Scholar
  156. Slattery DA, Markou A, Froestl W, Cryan JF (2005) The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intracranial self-stimulation studies in the rat. Neuropsychopharmacology 30:2065–2072PubMedCrossRefGoogle Scholar
  157. Smith MA, Yancey DL, Morgan D, Liu Y, Froestl W, Roberts DC (2004) Effects of positive allosteric modulators of the GABAB receptor on cocaine self-administration in rats. Psychopharmacology (Berl) 173:105–111CrossRefGoogle Scholar
  158. Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ (2004) cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 24:6115–6126PubMedCrossRefGoogle Scholar
  159. Stevens CF (2004) Presynaptic function. Curr Opin Neurobiol 14:341–345PubMedCrossRefGoogle Scholar
  160. Tabata T, Aiba A, Kano M (2002) Extracellular calcium controls the dynamic range of neuronal metabotropic glutamate receptor responses. Mol Cell Neurosci 20:56–68PubMedCrossRefGoogle Scholar
  161. Tabata T, Araishi K, Hashimoto K, Hashimotodani Y, Putten H van der, Bettler B, Kano M (2004) Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc Natl Acad Sci USA 101:16952–16957PubMedCrossRefGoogle Scholar
  162. Taira T, Tanikawa T, Kawamura H, Iseki H, Takakura K (1994) Spinal intrathecal baclofen suppresses central pain after a stroke. J Neurol Neurosurg Psychiatry 57:381–382PubMedCrossRefGoogle Scholar
  163. Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18:3138–3146PubMedGoogle Scholar
  164. Thompson SM, Gähwiler BH (1992) Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J Physiol (Lond) 451:329–345Google Scholar
  165. Thuault SJ, Brown JT, Sheardown SA, Jourdain S, Fairfax B, Spencer JP, Restituito S, Nation JH, Topps S, Medhurst AD, Randall AD, Couve A, Moss SJ, Collingridge GL, Pangalos MN, Davies CH, Calver AR (2004) The GABA(B2) subunit is critical for the trafficking and function of native GABA(B) receptors. Biochem Pharmacol 68:1655–1666PubMedCrossRefGoogle Scholar
  166. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215PubMedCrossRefGoogle Scholar
  167. Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB (2005) Nova regulates brain-specific splicing to shape the synapse. Nat Genet 37:844–852PubMedCrossRefGoogle Scholar
  168. Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K (2001) Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 60:963–971PubMedGoogle Scholar
  169. Urwyler S, Pozza MF, Lingenhoehl K, Mosbacher J, Lampert C, Froestl W, Koller M, Kaupmann K (2003) N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther 307:322–330PubMedCrossRefGoogle Scholar
  170. Vergnes M, Boehrer A, Simler S, Bernasconi R, Marescaux C (1997) Opposite effects of GABAB receptor antagonists on absences and convulsive seizures. Eur J Pharmacol 332:245–255PubMedCrossRefGoogle Scholar
  171. Vernon E, Meyer G, Pickard L, Dev K, Molnar E, Collingridge GL, Henley JM (2001) GABA(B) receptors couple directly to the transcription factor ATF4. Mol Cell Neurosci 17:637–645PubMedCrossRefGoogle Scholar
  172. Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Muller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABA(B) receptor variants. Neuron 50:589–601PubMedCrossRefGoogle Scholar
  173. Vogt KE, Nicoll RA (1999) Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci USA 96:1118–1122PubMedCrossRefGoogle Scholar
  174. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682PubMedCrossRefGoogle Scholar
  175. White JH, McIllhinney RA, Wise A, Ciruela F, Chan WY, Emson PC, Billinton A, Marshall FH (2000) The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc Natl Acad Sci USA 97:13967–13972PubMedCrossRefGoogle Scholar
  176. White JH, Ginham R, Pontier S, Wise A, Blein S, Barlow P, Bouvier M, McIlhinney RA (2002) The heterodimeric GABAB receptor and associated proteins. FENS Abstr 1:062.061Google Scholar
  177. Wise A, Green A, Main MJ, Wilson R, Fraser N, Marshall FH (1999) Calcium sensing properties of the GABA(B) receptor. Neuropharmacology 38:1647–1656PubMedCrossRefGoogle Scholar
  178. Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204–212PubMedCrossRefGoogle Scholar
  179. Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci USA 95:4720–4725PubMedCrossRefGoogle Scholar
  180. Xi ZX, Stein EA (1999) Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release. J Pharmacol Exp Ther 290:1369–1374PubMedGoogle Scholar
  181. Yang YY, Yin GL, Darnell RB (1998) The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc Natl Acad Sci USA 95:13254–13259PubMedCrossRefGoogle Scholar
  182. Yuan H, Michelsen K, Schwappach B (2003) 14-3-3 Dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13:638–646PubMedCrossRefGoogle Scholar
  183. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548PubMedCrossRefGoogle Scholar
  184. Zilberter Y, Kaiser KM, Sakmann B (1999) Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 24:979–988PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Center for Molecular Neurobiology (ZMNH)University of HamburgHamburgGermany

Personalised recommendations