Cell and Tissue Research

, Volume 326, Issue 2, pp 369–377 | Cite as

Dendritic spikes and activity-dependent synaptic plasticity

  • Knut HolthoffEmail author
  • Yury Kovalchuk
  • Arthur Konnerth


Whereas the regenerative nature of action potential conduction in axons has been known since the late 1940s, neuronal dendrites have been considered as passive cables transferring incoming synaptic activity to the soma. The relatively recent discovery that neuronal dendrites contain active conductances has revolutionized our view of information processing in neurons. In many neuronal cell types, sodium action potentials initiated at the axon initial segment can back-propagate actively into the dendrite thereby serving, for the dendrite, as an indicator of the output activity of the neuron. In addition, the dendrites themselves can initiate action-potential-like regenerative responses, so-called dendritic spikes, that are mediated either by the activation of sodium, calcium, and/or N-methyl-D-aspartate receptor channels. Here, we review the recent experimental and theoretical evidence for a role of regenerative dendritic activity in information processing within neurons and, especially, in activity-dependent synaptic plasticity.


Dendritic spikes Synaptic plasticity LTD LTP 


  1. Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487PubMedCrossRefGoogle Scholar
  2. Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462PubMedCrossRefGoogle Scholar
  3. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedGoogle Scholar
  4. Bischofberger J, Jonas P (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol (Lond) 504:359–365CrossRefGoogle Scholar
  5. Buzsaki G, Kandel A (1998) Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J Neurophysiol 79:1587–1591PubMedGoogle Scholar
  6. Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc Natl Acad Sci USA 93:9921–9925PubMedCrossRefGoogle Scholar
  7. Callaway JC, Ross WN (1995) Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol 74:1395–1403PubMedGoogle Scholar
  8. Cash S, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position-independent. J Neurosci 18:10–15PubMedGoogle Scholar
  9. Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22:383–394PubMedCrossRefGoogle Scholar
  10. Chen WR, Midtgaard J, Shepherd GM (1997) Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467PubMedCrossRefGoogle Scholar
  11. Cho K, Aggleton JP, Brown MW, Bashir ZI (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol (Lond) 532:459–466CrossRefGoogle Scholar
  12. Connor JA, Petrozzino J, Pozzo-Miller LD, Otani S (1999) Calcium signals in long-term potentiation and long-term depression. Can J Physiol Pharmacol 77:722–734PubMedCrossRefGoogle Scholar
  13. Conti R, Lisman J (2002) A large sustained Ca2+ elevation occurs in unstimulated spines during the LTP pairing protocol but does not change synaptic strength. Hippocampus 12:667–679PubMedCrossRefGoogle Scholar
  14. Coombs JS, Curtis DR, Eccles JC (1957) The interpretation of spike potentials of motoneurones. J Physiol (Lond) 139:198–231Google Scholar
  15. Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. J Neurophysiol 85:399–406PubMedGoogle Scholar
  16. Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30PubMedCrossRefGoogle Scholar
  17. Djurisic M, Zecevic D (2005) Imaging of spiking and subthreshold activity of mitral cells with voltage-sensitive dyes. Ann N Y Acad Sci 1048:92–102PubMedCrossRefGoogle Scholar
  18. Fatt P (1957) Sequence of events in synaptic activation of a motoneurone. J Neurophysiol 20:61–80PubMedGoogle Scholar
  19. Fuortes MG, Frank K, Becker MC (1957) Steps in the production of motoneuron spikes. J Gen Physiol 20:735–752CrossRefGoogle Scholar
  20. Goldberg J, Holthoff K, Yuste R (2002) A problem with Hebb and local spikes. Trends Neurosci 25:433–435PubMedCrossRefGoogle Scholar
  21. Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21:1189–1200PubMedCrossRefGoogle Scholar
  22. Golding NL, Kath WL, Spruston N (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86:2998–3010PubMedGoogle Scholar
  23. Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRefGoogle Scholar
  24. Hansel C, Artola A, Singer W (1997) Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9:2309–2322PubMedCrossRefGoogle Scholar
  25. Häusser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647PubMedCrossRefGoogle Scholar
  26. Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744PubMedCrossRefGoogle Scholar
  27. Hebb DO (1949) The organization of behaviour. Wiley, New YorkGoogle Scholar
  28. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefGoogle Scholar
  29. Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996PubMedCrossRefGoogle Scholar
  30. Hirsch JA, Alonso JM, Reid RC (1995) Visually evoked calcium action potentials in cat striate cortex. Nature 378:612–616PubMedCrossRefGoogle Scholar
  31. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875PubMedCrossRefGoogle Scholar
  32. Holthoff K (2004) Regenerative dendritic spikes and synaptic plasticity. Curr Neurovasc Res 1:381–387PubMedCrossRefGoogle Scholar
  33. Holthoff K, Kovalchuk Y, Yuste R, Konnerth A (2004) Single-shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex. J Physiol (Lond) 560:27–36CrossRefGoogle Scholar
  34. Holthoff K, Kovalchuk Y, Konnerth A (2005) Bidirectional single-shock synaptic plasticity induced by dendritic spikes in cortical pyramidal cells. Soc Neurosci Abstr 162:3Google Scholar
  35. Hounsgaard J, Yamamoto C (1979) Dendritic spikes in Purkinje cells of the guinea pig cerebellum studied in vitro. Exp Brain Res 37:387–398PubMedCrossRefGoogle Scholar
  36. Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24:9847–9861PubMedCrossRefGoogle Scholar
  37. Jefferys JG (1979) Initiation and spread of action potentials in granule cells maintained in vitro in slices of guinea-pig hippocampus. J Physiol (Lond) 289:375–388Google Scholar
  38. Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186PubMedCrossRefGoogle Scholar
  39. Kamondi A, Acsady L, Buzsaki G (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci 18:3919–3928PubMedGoogle Scholar
  40. Köster HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc Natl Acad Sci USA 95:9596–9601CrossRefGoogle Scholar
  41. Larkum ME, Rioult MG, Lüscher HR (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75:154–170PubMedGoogle Scholar
  42. Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604PubMedCrossRefGoogle Scholar
  43. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86:9574–9578PubMedCrossRefGoogle Scholar
  44. Lisman J, Spruston N (2005) Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat Neurosci 8:839–841PubMedGoogle Scholar
  45. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307PubMedCrossRefGoogle Scholar
  46. Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721PubMedCrossRefGoogle Scholar
  47. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190PubMedCrossRefGoogle Scholar
  48. Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304PubMedCrossRefGoogle Scholar
  49. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213PubMedCrossRefGoogle Scholar
  50. Malenka RC (1991) The role of postsynaptic calcium in the induction of long-term potentiation. Mol Neurobiol 5:289–295PubMedCrossRefGoogle Scholar
  51. Malenka RC, Lancaster B, Zucker RS (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 9:121–128PubMedCrossRefGoogle Scholar
  52. Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796PubMedCrossRefGoogle Scholar
  53. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRefGoogle Scholar
  54. Miesenböck G (2004) Genetic methods for illuminating the function of neural circuits. Curr Opin Neurobiol 14:395–402PubMedCrossRefGoogle Scholar
  55. Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5–15PubMedCrossRefGoogle Scholar
  56. Miyakawa H, Kato H (1986) Active properties of dendritic membrane examined by current source density analysis in hippocampal CA1 pyramidal neurons. Brain Res 399:303–309PubMedCrossRefGoogle Scholar
  57. Neveu D, Zucker RS (1996a) Long-lasting potentiation and depression without presynaptic activity. J Neurophysiol 75:2157–2160PubMedGoogle Scholar
  58. Neveu D, Zucker RS (1996b) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16:619–629PubMedCrossRefGoogle Scholar
  59. Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci 24:1689–1699PubMedCrossRefGoogle Scholar
  60. Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854–1863PubMedCrossRefGoogle Scholar
  61. Pan E, Colbert CM (2001) Subthreshold inactivation of Na+ and K+ channels supports activity-dependent enhancement of back-propagating action potentials in hippocampal CA1. J Neurophysiol 85:1013–1016PubMedGoogle Scholar
  62. Pockberger H (1991) Electrophysiological and morphological properties of rat motor cortex neurons in vivo. Brain Res 539:181–190PubMedCrossRefGoogle Scholar
  63. Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29:779–796PubMedCrossRefGoogle Scholar
  64. Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627PubMedCrossRefGoogle Scholar
  65. Ramón y Cajal S (1891) Significación fisiológica de las expansiones protoplásmicas y nerviosas de la sustancia gris. Rev Cienc Med Barcel 22:23Google Scholar
  66. Ramón y Cajal S (1904) La textura del sistema nerviosa del hombre y los vertebrados, primera edicion. Moya, MadridGoogle Scholar
  67. Rathenberg J, Nevian T, Witzemann V (2003) High-efficiency transfection of individual neurons using modified electrophysiology techniques. J Neurosci Methods 126:91–98PubMedCrossRefGoogle Scholar
  68. Regehr W, Kehoe JS, Ascher P, Armstrong C (1993) Synaptically triggered action potentials in dendrites. Neuron 11:145–151PubMedCrossRefGoogle Scholar
  69. Reyes A (2001) Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24:653–675PubMedCrossRefGoogle Scholar
  70. Richardson TL, Turner RW, Miller JJ (1987) Action-potential discharge in hippocampal CA1 pyramidal neurons: current source-density analysis. J Neurophysiol 58:981–996PubMedGoogle Scholar
  71. Roberts PD, Bell CC (2002) Spike timing dependent synaptic plasticity in biological systems. Biol Cybern 87:392–403PubMedCrossRefGoogle Scholar
  72. Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 11:343–348PubMedCrossRefGoogle Scholar
  73. Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol (Lond) 505:605–616CrossRefGoogle Scholar
  74. Schiller J, Major G, Köster HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289PubMedCrossRefGoogle Scholar
  75. Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12:305–314PubMedCrossRefGoogle Scholar
  76. Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 20:1149–1164CrossRefGoogle Scholar
  77. Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J Neurophysiol 24:272–285Google Scholar
  78. Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300PubMedCrossRefGoogle Scholar
  79. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324PubMedCrossRefGoogle Scholar
  80. Stuart G, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703–712PubMedCrossRefGoogle Scholar
  81. Stuart GJ, Häusser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71PubMedCrossRefGoogle Scholar
  82. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72PubMedCrossRefGoogle Scholar
  83. Stuart G, Schiller J, Sakmann B (1997a) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol (Lond) 505:617–632CrossRefGoogle Scholar
  84. Stuart G, Spruston N, Sakmann B, Häusser M (1997b) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125–131PubMedCrossRefGoogle Scholar
  85. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165PubMedCrossRefGoogle Scholar
  86. Svoboda K, Helmchen F, Denk W, Tank DW (1999) Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci 2:65–73PubMedCrossRefGoogle Scholar
  87. Tsodyks M (2002) Spike-timing-dependent synaptic plasticity—the long road towards understanding neuronal mechanisms of learning and memory. Trends Neurosci 25:599–600PubMedCrossRefGoogle Scholar
  88. Turner RW, Meyers DE, Richardson TL, Barker JL (1991) The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci 11:2270–2280PubMedGoogle Scholar
  89. Urban NN, Barrionuevo G (1998) Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci USA 95:11450–11455PubMedCrossRefGoogle Scholar
  90. Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937PubMedGoogle Scholar
  91. Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273PubMedCrossRefGoogle Scholar
  92. Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J Neurosci 24:11127–11136PubMedCrossRefGoogle Scholar
  93. Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 23:8558–8567PubMedGoogle Scholar
  94. Waters J, Schäfer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87:145–170PubMedCrossRefGoogle Scholar
  95. Wei DS, Mei YA, Bagal A, Kao JP, Thompson SM, Tang CM (2001) Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293:2272–2275PubMedCrossRefGoogle Scholar
  96. Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781–787PubMedGoogle Scholar
  97. Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16:701–716PubMedCrossRefGoogle Scholar
  98. Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 19:1976–1987PubMedGoogle Scholar
  99. Zecevic D (1996) Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325PubMedCrossRefGoogle Scholar
  100. Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37–44PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Knut Holthoff
    • 1
    Email author
  • Yury Kovalchuk
    • 1
  • Arthur Konnerth
    • 1
  1. 1.Institute of NeuroscienceTechnical University MunichMunichGermany

Personalised recommendations