Advertisement

Cell and Tissue Research

, Volume 326, Issue 1, pp 169–178 | Cite as

Queen-worker differences in spermatheca reservoir of phylogenetically basal ants

  • Bruno GobinEmail author
  • Fuminori Ito
  • Christian Peeters
  • Johan Billen
Regular Article

Abstract

Ant queens mate when young and store sperm in their spermatheca to fertilize eggs for several years until their death. In contrast, workers in most species never mate. We have compared the histological organization of spermathecae in 25 poneromorph species exhibiting various degrees of queen-worker dimorphism. The spermathecae of both castes in all species are similar in having a reservoir connected by a sperm duct to the ovary, and a paired gland opening into this duct. The reservoir of queens typically has a columnar epithelium in the hilar region (near the opening of the sperm duct), whereas the epithelium in the distal region is cuboidal. Abundant mitochondria together with apical microvilli and basal invaginations indicate an osmoregulatory function. In contrast, the reservoir epithelium of workers is flattened throughout and lacks these transport characteristics. This single difference shows the importance of a columnar epithelium in the reservoir for sperm storage. However, our data have not revealed inter-specific variations in the development of the hilar region linked with higher fecundity. We have found no consistent differences in associated structures, such as the spermatheca gland or sperm ducts, or in the musculature between queens and workers.

Keywords

Sperm storage Dimorphism Mating Haplodiploidy Hymenoptera Ants 

Notes

Acknowledgements

We thank numerous colleagues for providing us with specimens, especially T. Monnin, J. Liebig, D. Fresneau, J. Delabie, X. Espadaler, A. Hartmann and K. Schilder. We are indebted to D. Wheeler and T. Wenseleers for comments on the manuscript and to W. Fannes, D. Corstjens and K. Collart for preparing the microscopic slides.

References

  1. Allard D, Ito F, Gobin B, Tsuji K, Billen J (2005) Differentiation of the reproductive tract between dominant and subordinate workers in the Japanese queenless ant Diacamma sp. Acta Zool (Stockholm) 86:159–166CrossRefGoogle Scholar
  2. Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New YorkGoogle Scholar
  3. Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects–ants, wasps, bees, and termites. Westview, Boulder, Colo., pp 3–33Google Scholar
  4. Birkhead TR, Møller AP (1993) Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol J Linn Soc 50:295–311CrossRefGoogle Scholar
  5. Bolton B (2003) Synopsis and classification of Formicidae. Mem Am Entomol Inst Gainesville Fl 71:370Google Scholar
  6. Braun U, Peeters C, Hölldobler B (1994) The giant nests of the African stink ant Paltothyreus tarsatus (Formicidae, Ponerinae). Biotropica 26:308–311CrossRefGoogle Scholar
  7. Choe JC, Crespi BJ (1997) Mating systems in insects and arachnids. Cambridge University Press, CambridgeGoogle Scholar
  8. Clark J, Lange AB (2001) Evidence of a neural loop involved in controlling spermathecal contractions in Locusta migratoria. J Insect Physiol 47:607–616PubMedCrossRefGoogle Scholar
  9. Cogni R, Oliveira PS (2004) Patterns in foraging and nesting ecology in the neotropical ant, Gnamptogenys moelleri (Formicidae, Ponerinae). Insect Soc 51:123–130CrossRefGoogle Scholar
  10. Crane E (1990) Bees and beekeeping. Comstock, Ithaca, NYGoogle Scholar
  11. Dallai R (1975) Fine structure of the spermatheca of Apis mellifera. J Insect Physiol 21:89–109CrossRefGoogle Scholar
  12. Gobin B, Peeters C, Billen J (1998a) Colony reproduction and arboreal life in the ponerine ant Gnamptogenys menadensis (Hymenoptera: Formicidae). Neth J Zool 48:53–63CrossRefGoogle Scholar
  13. Gobin B, Peeters C, Billen J (1998b) Production of trophic eggs by virgin workers in the ponerine ant Gnamptogenys menadensis. Physiol Entomol 23:329–336CrossRefGoogle Scholar
  14. Hagan HR (1954a) The reproductive system of the army-ant queen, Eciton (Eciton). Part 1. General anatomy. Am Mus Novit 1663:1–12Google Scholar
  15. Hagan HR (1954b) The reproductive system of the army-ant queen, Eciton (Eciton). Part 2. Histology. Am Mus Novit 1664:1–17Google Scholar
  16. Ito F (1993) Functional monogyny and dominance hierarchy in the queenless ponerine ant Pachycondyla (= Bothroponera) sp. in West Java, Indonesia (Hymenoptera, Formicidae, Ponerinae). Ethology 95:126–140CrossRefGoogle Scholar
  17. Ito F (1997) Colony composition and morphological caste differentiation between ergatoid queens and workers in the ponerine ant genus Leptogenys in the oriental tropics. Ethol Ecol Evol 9:335–343Google Scholar
  18. Ito F (1998) Colony composition and specialized predation on millipedes in the enigmatic ponerine ant genus Probolomyrmex (Hymenoptera, Formicidae). Insect Soc 45:79–83CrossRefGoogle Scholar
  19. Ito F, Ohkawara K (1994) Spermatheca size differentiation between queens and workers in primitive ants- relationshsip with reproductive structure of colonies. Naturwissenschaften 81:138–140CrossRefGoogle Scholar
  20. Ito F, Yusoff NR, Idris AH (1996) Colony composition and queen behaviour in polygynous colonies of the oriental ant Odontomachus rixosus (Hymenoptera: Formicidae). Insect Soc 43:77–86CrossRefGoogle Scholar
  21. Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insect Soc 45:235–246CrossRefGoogle Scholar
  22. Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389:958–960CrossRefGoogle Scholar
  23. Koeniger G (1970) Bedeutung der Tracheenhülle und Anhangdrüse der Spermatheka für die Befruchtungsfähigkeit der Spermatozoen in der Bienenkönigin (Apis mellifica L.). Apidologie 1:55–71CrossRefGoogle Scholar
  24. Lai-Fook J (1967) The structure of developing muscle insertions in insects. J Morphol 123:503–528PubMedCrossRefGoogle Scholar
  25. Martins GF, Serrão JE (2002) A comparative study of the spermatheca in bees (Hymenoptera; Apoidea). Sociobiology 40:711–720Google Scholar
  26. Neubaum DM, Wolfner MF (1999) Wise, winsome, or weird? Mechanisms of sperm storage in female animals. Curr Topics Dev Biol 41:67–97CrossRefGoogle Scholar
  27. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80CrossRefGoogle Scholar
  28. Oliveira PS, Hölldobler B (1990) Dominance orders in the ponerine ant Pachycondyla apicalis (Hymenoptera, Formicidae). Behav Ecol Sociobiol 27:385–393CrossRefGoogle Scholar
  29. Pabalan N, Davey KG, Packer L (1996) Comparative morphology of spermathecae in solitary and primitive eusocial bees (Hymenoptera; Apoidea). Can J Zool 74:802–808CrossRefGoogle Scholar
  30. Peeters C (1993) Monogyny and polygyny in ponerine ants with or without queens. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, pp 234–261Google Scholar
  31. Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu Rev Entomol 46:601–630PubMedCrossRefGoogle Scholar
  32. Peeters C, Liebig J, Hölldobler B (2000) Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Insect Soc 47:325–332CrossRefGoogle Scholar
  33. Ratnieks FLW, Keller L (1998) Queen control of egg fertilization in the honey bee. Behav Ecol Sociobiol 44:57–61CrossRefGoogle Scholar
  34. Reichardt AK, Wheeler DE (1996) Multiple mating in the ant Acromyrmex versicolor: a case of female control. Behav Ecol Sociobiol 38:219–225CrossRefGoogle Scholar
  35. Schneirla TC (1971) Army ants. In: Topoff HR (ed) A study in social organization. Freeman, San FranciscoGoogle Scholar
  36. Schoeters E, Billen J (2000) The importance of the spermathecal duct in bumble bees. J Insect Physiol 46:1303–1312PubMedCrossRefGoogle Scholar
  37. Tschinkel WR (1987a) Fire ant queen longevity and age: estimation by sperm depletion. Ann Entomol Soc Am 80:263–266Google Scholar
  38. Tschinkel WR (1987b) Relationship between ovariole number and spermathecal sperm count in ant queens: a new allometry. Ann Entomol Soc Am 80:208–211Google Scholar
  39. Tschinkel WR, Porter SD (1988) Efficiency of sperm use in queens of the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Ann Entomol Soc Am 81:777–781Google Scholar
  40. Villet M, Crewe R, Robertson H (1989) Mating behavior and dispersal in Paltothyreus tarsatus Fabr. (Hymenoptera: Formicidae). J Insect Behav 2:413–417CrossRefGoogle Scholar
  41. Wheeler D, Krutzsch P (1994) Ultrastructure of the spermatheca and its associated gland in the ant Crematogaster opuntiae (Hymenoptera: Formicidae). Zoomorphology 114:203–212CrossRefGoogle Scholar
  42. Whelden RM (1963) The anatomy of the adult queen and workers of the army ants Eciton burchelli Westwood and Eciton hamatum Fabricus (continued). J N Y Entomol Soc 71:158–178Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bruno Gobin
    • 1
    • 2
    • 4
    Email author
  • Fuminori Ito
    • 2
  • Christian Peeters
    • 3
  • Johan Billen
    • 1
  1. 1.Laboratory of EntomologyK.U. LeuvenLeuvenBelgium
  2. 2.Faculty of AgricultureKagawa UniversityTakamatsuJapan
  3. 3.CNRS UMR 7625, Laboratoire d’ÉcologieUniversité Pierre et Marie CurieParisFrance
  4. 4.Zoology DepartmentPCFruit-Royal Research Station of GorsemSint TruidenBelgium

Personalised recommendations