Cell and Tissue Research

, 326:1 | Cite as

Neuropeptides in interneurons of the insect brain

Review

Abstract

A large number of neuropeptides has been identified in the brain of insects. At least 35 neuropeptide precursor genes have been characterized in Drosophila melanogaster, some of which encode multiple peptides. Additional neuropeptides have been found in other insect species. With a few notable exceptions, most of the neuropeptides have been demonstrated in brain interneurons of various types. The products of each neuropeptide precursor seem to be co-expressed, and each precursor displays a unique neuronal distribution pattern. Commonly, each type of neuropeptide is localized to a relatively small number of neurons. We describe the distribution of neuropeptides in brain interneurons of a few well-studied insect species. Emphasis has been placed upon interneurons innervating specific brain areas, such as the optic lobes, accessory medulla, antennal lobes, central body, and mushroom bodies. The functional roles of some neuropeptides and their receptors have been investigated in D. melanogaster by molecular genetics techniques. In addition, behavioral and electrophysiological assays have addressed neuropeptide functions in the cockroach Leucophaea maderae. Thus, the involvement of brain neuropeptides in circadian clock function, olfactory processing, various aspects of feeding behavior, and learning and memory are highlighted in this review. Studies so far indicate that neuropeptides can play a multitude of functional roles in the brain and that even single neuropeptides are likely to be multifunctional.

Keywords

Insect brain Neuropeptide G-protein-coupled receptor Drosophila melanogaster Schistocerca gregaria Leucophaea maderae (Insecta) 

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedGoogle Scholar
  2. Agricola H, Bräunig P (1995) Comparative aspects of peptidergic signalling pathways in the nervous system of arthropods. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 303–327Google Scholar
  3. Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson BS (ed) Insect olfaction. Springer, Berlin Heidelberg New York, pp 97–124Google Scholar
  4. Baggerman G, Cerstiaens A, De Loof A, Schoofs L (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277:40368–40374PubMedGoogle Scholar
  5. Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) Peptidomics.J Chromatogr B Analyt Technol Biomed Life Sci 803:3–16PubMedGoogle Scholar
  6. Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L (2005) Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 40:250–260PubMedGoogle Scholar
  7. Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033PubMedGoogle Scholar
  8. Bicker G, Schäfer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122PubMedGoogle Scholar
  9. Birse RT, Johnson EC, Taghert PH, Nässel DR (2006) Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 66:33–46PubMedGoogle Scholar
  10. Bloch G, Solomon SM, Robinson GE, Fahrbach SE (2003) Patterns of PERIOD and pigment-dispersing hormone immunoreactivity in the brain of the European honeybee (Apis mellifera): age and time-related plasticity. J Comp Neurol 464:269–284PubMedGoogle Scholar
  11. Bowser PR, Tobe SS (2005) Immunocytochemical analysis of putative allatostatin receptor (DAR-2) distribution in the CNS of larval Drosophila melanogaster. Peptides 26:81–87PubMedGoogle Scholar
  12. Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543PubMedGoogle Scholar
  13. Brody T, Cravchik A (2000) Drosophila melanogaster G-protein-coupled receptors. J Cell Biol 150:F83–F88PubMedGoogle Scholar
  14. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionary conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221PubMedGoogle Scholar
  15. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035–1042PubMedGoogle Scholar
  16. Burnstock G (2004) Cotransmission. Curr Opinion Pharmacol 4:47–52Google Scholar
  17. Cazzamali G, Torp M, Hauser F, Williamson M, Grimmelikhuijzen CJ (2005) The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 335:14–19PubMedGoogle Scholar
  18. Choi MY, Rafaeli A, Jurenka RA (2001) Pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res 306:459–465PubMedGoogle Scholar
  19. Claeys I, Poels J, Simonet G, Franssens V, Van Loy T, Van Hiel MB, Breugelmans B, Vanden Broeck J (2005) Insect neuropeptide and peptide hormone receptors: current knowledge and future directions. Vitam Horm 73:217–282PubMedGoogle Scholar
  20. Coates D, Siviter R, Isaac RE (2000) Exploring the Caenorhabditis elegans and Drosophila melanogaster genomes to understand neuropeptide and peptidase function. Biochem Soc Trans 28:464–469PubMedGoogle Scholar
  21. Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302PubMedGoogle Scholar
  22. De Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94:679–689PubMedGoogle Scholar
  23. De Jong-Brink M, Ter Maat A, Tensen CP (2001) NPY in invertebrates: molecular answers to altered functions during evolution. Peptides 22:309–315PubMedGoogle Scholar
  24. Dircksen H, Homberg U (1995) Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust, Locusta migratoria. Cell Tissue Res 279:495–515Google Scholar
  25. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15PubMedGoogle Scholar
  26. Eckert M, Predel R, Gundel M (1999) Periviscerokinin-like immunoreactivity in the nervous system of the American cockroach. Cell Tissue Res 295:159–170PubMedGoogle Scholar
  27. Erber J, Schürmann F-W, Hartmann T (1989) FMRFamide in the bee brain: immunocytochemistry, behaviour and electrophysiology. In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart, p 63Google Scholar
  28. Ewer J (2005) Behavioral actions of neuropeptides in invertebrates: insights from Drosophila. Horm Behav 48:418–429PubMedGoogle Scholar
  29. Ewer J, Reynolds S (2002) Neuropeptide control of molting in insects. In: Pfaff DW, Arnold AP, Fahrbach SE, Etgen AM, Rubin RT (eds) Hormones, brain and behavior. Academic Press, San Diego, pp 1–92Google Scholar
  30. Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232PubMedGoogle Scholar
  31. Feany MB, Quinn WG (1995) A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268:869–873PubMedGoogle Scholar
  32. Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475Google Scholar
  33. Gäde G (1997) The explosion of structural information on insect neuropeptides. In: Herz W et al (eds) Progress in the chemistry of organic natural products. Springer, Berlin Heidelberg New York, pp 1–128Google Scholar
  34. Garczynski SF, Brown MR, Shen P, Murray TF, Crim JW (2002) Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23:773–780PubMedGoogle Scholar
  35. Hall JC (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Genet 48:1–280PubMedGoogle Scholar
  36. Hamasaka Y, Nässel DR (2006) Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J Comp Neurol 494:314–330PubMedGoogle Scholar
  37. Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366Google Scholar
  38. Heilig M, Widerlov E (1995) Neurobiology and clinical aspects of neuropeptide Y. Crit Rev Neurobiol 9:115–136PubMedGoogle Scholar
  39. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275PubMedGoogle Scholar
  40. Helfrich-Förster C (1997) Development of pigment-dispersing hormone immunoreactive neurons in the nervous system of Drosophila melanogaster. J Comp Neurol 380:335–354PubMedGoogle Scholar
  41. Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62:94–102PubMedGoogle Scholar
  42. Helfrich-Förster C (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4:65–76PubMedGoogle Scholar
  43. Helfrich-Förster C, Homberg U (1993) Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J Comp Neurol 337:177–190PubMedGoogle Scholar
  44. Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594PubMedCrossRefGoogle Scholar
  45. Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11:1126–1142PubMedGoogle Scholar
  46. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G protein-coupled receptors in Anopheles gambiae. Science 298:176–178PubMedGoogle Scholar
  47. Hofer S, Homberg U (2006) Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res (in press)Google Scholar
  48. Hofer S, Dircksen H, Homberg U (2003) Involvement of a neuropeptide related to orcokinin in light entrainment of the circadian clock of the cockroach. In: Elsner N, Zimmermann H (eds) The neurosciences from basic research to therapy. Thieme, Stuttgart, pp 808–809Google Scholar
  49. Hofer S, Dircksen H, Tollbäck P, Homberg U (2005) Novel insect orcokinins: characterization and neuronal distribution in the brains of selected dicondylian insects. J Comp Neurol 490:57–71PubMedGoogle Scholar
  50. Homberg U (1994) Distribution of neurotransmitters in the insect brain. Progress in Zoology, vol 40. Fischer, StuttgartGoogle Scholar
  51. Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–2002PubMedGoogle Scholar
  52. Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208PubMedGoogle Scholar
  53. Homberg U, Prakash N (1996) Development of pigment-dispersing hormone-like immunoreactivity in the brain of the locust Schistocerca gregaria: comparison with immunostaining for urotensin I and Mas-allatotropin. Cell Tissue Res 285:127–139Google Scholar
  54. Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx moth Manduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity. Cell Tissue Res 259:401–419PubMedGoogle Scholar
  55. Homberg U, Würden S, Dircksen H, Rao KR (1991) Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357Google Scholar
  56. Homberg U, Vitzthum H, Müller M, Binkle U (1999) Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria: identification of immunoreactive neurons and colocalization with neuropeptides.J Comp Neurol 409:495–507 PubMedGoogle Scholar
  57. Homberg U, Reischig T, Stengl M (2003a) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–591PubMedGoogle Scholar
  58. Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003b) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430PubMedGoogle Scholar
  59. Homberg U, Brandl C, Clynen E, Schoofs L, Veenstra JA (2004) Mas-allatotropin/Lom-AG-myotropin immunostaining in the brain of the locust, Schistocerca gregaria. Cell Tissue Res 318:439–457PubMedGoogle Scholar
  60. Hyun S, Lee Y, Hong ST, Bang S, Paik D, Kang J, Shin J, Lee J, Jeon K, Hwang S, Bae E, Kim J (2005) Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48:267–278PubMedGoogle Scholar
  61. Isaac RE, Taylor CA, Hamasaka Y, Nässel DR, Shirras AD (2004) Proctolin in the post-genomic era: new insights and challenges. Invert Neurosci 5:51–64PubMedGoogle Scholar
  62. Johnson EC, Garczynski SF, Park D, Crim JW, Nässel DR, Taghert PH (2003a) Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proc Natl Acad Sci USA 100:6198–6203PubMedGoogle Scholar
  63. Johnson EC, Bohn LM, Barak LS, Birse RT, Nässel DR, Caron MG, Taghert PH (2003b) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278:52172–52178PubMedGoogle Scholar
  64. Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208:1239–1246PubMedGoogle Scholar
  65. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237PubMedGoogle Scholar
  66. Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422:66–94PubMedGoogle Scholar
  67. Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden-Dye L, Burke JF (2003) Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13:1715–1720PubMedGoogle Scholar
  68. Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S (2004) Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44:521–533PubMedGoogle Scholar
  69. Kloppenburg P, Homberg U, Kühn U, Binkle U, Erber J (1990) Gastrin/CCK in the mushroom bodies of the honeybee: immunocytochemistry and behaviour. In: Elsner N, Roth G (eds) Gene—brain—behaviour. Thieme, Stuttgart, p 322Google Scholar
  70. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297PubMedGoogle Scholar
  71. Lee KS, You KH, Choo JK, Han YM, Yu K (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279:50781–50789PubMedGoogle Scholar
  72. Lenz C, Williamson M, Hansen GN, Grimmelikhuijzen CJP (2001) Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 286:1117–1122PubMedGoogle Scholar
  73. Lin Y, Stormo GD, Taghert PH (2004) The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24:7951–7957PubMedGoogle Scholar
  74. Liu F, Baggerman G, D’Hertog W, Peter V, Schoofs L, Wets G (2005) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics (Epub)Google Scholar
  75. Liu G, Seiler H, Wen Ai, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556PubMedGoogle Scholar
  76. Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91PubMedGoogle Scholar
  77. Lu D, Lee KY, Horodyski FM, Witten JL (2002) Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J Comp Neurol 446:377–396PubMedGoogle Scholar
  78. McCormick J, Nichols R (1993) Spatial and temporal expression identify drosomyosuppressin as a brain-gut peptide in Drosophila melanogaster. J Comp Neurol 338:279–288Google Scholar
  79. McNabb SL, Baker JD, Agapite J, Steller H, Riddiford LM, Truman JW (1999) Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron 19:813–823Google Scholar
  80. Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, De Loof A, Schoofs L, Taghert PH (2005) PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48:213–219PubMedGoogle Scholar
  81. Meeusen T, Mertens I, De Loof A, Schoofs L (2003) G protein-coupled receptors in invertebrates: a state of the art.Int Rev Cytol 230:189–261PubMedCrossRefGoogle Scholar
  82. Moore MS, DeZazzo J, Luk AY, Tully Y, Singh CM, Heberlein U (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signalling pathway. Cell 93:997–1007PubMedGoogle Scholar
  83. Muren JE, Lundquist CT, Nässel D (1995) Abundant distribution of locustatachykinin-like peptide in the nervous system and intestine of the cockroach Leucophaea maderae. Philos Trans R Soc Lond Biol 348:423–444PubMedGoogle Scholar
  84. Nässel DR (1991) Neurotransmitters and neuromodulators in the insect visual system. Progr Neurobiol 37:179–254Google Scholar
  85. Nässel DR (1993a) Neuropeptides in the insect brain: a review. Cell Tissue Res 273:1–29PubMedGoogle Scholar
  86. Nässel DR (1993b) Insect myotropic peptides: differential distribution of locustatachykinin-and leucokinin-like immunoreactive neurons in the locust brain. Cell Tissue Res 274:27–40PubMedGoogle Scholar
  87. Nässel DR (1999) Tachykinin-related peptides in invertebrates: a review. Peptides 20:141–158PubMedGoogle Scholar
  88. Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles of neuromodulators and neurohormones. Progr Neurobiol 68:1–84Google Scholar
  89. Nässel DR, Taghert P (2005) Neuropeptides in invertebrates. Encyclopedia of Life Sciences. Wiley, http://www.els.net
  90. Nässel DR, Ohlsson LG, Johansson KUI, Grimmelikhuijzen CJP (1988) Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide. Neuroscience 27:347–362PubMedGoogle Scholar
  91. Nässel DR, Cantera R, Karlsson A (1992) Neurons in the cockroach nervous system reacting with antisera to the peptide leucokinin I. J Comp Neurol 322:45–67PubMedGoogle Scholar
  92. Nässel DR, Shiga S, Mohrherr CJ, Rao R (1993) Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization. J Comp Neurol 331:183–198PubMedGoogle Scholar
  93. Nässel DR, Persson MGS, Muren JE (2000) Baratin, a nonamidated neurostimulating neuropeptide, isolated from cockroach brain: distribution and actions in the cockroach and locust nervous systems. J Comp Neurol 422:267–286PubMedGoogle Scholar
  94. Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98:14000–14005PubMedGoogle Scholar
  95. Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154PubMedGoogle Scholar
  96. Ohlsson LG, Johansson KUI, Nässel DR (1989) Postembryonic development of Arg-Phe-amide-like and cholecystokinin-like immunoreactive neurons in the blowfly optic lobe. Cell Tissue Res 256:199–211Google Scholar
  97. Okada R, Sakura M, Mizunami M (2003) Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. J Comp Neurol 458:158–174PubMedGoogle Scholar
  98. Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–3613PubMedGoogle Scholar
  99. Park JH, Schroeder AJ, Helfrich-Förster C, Jackson FR, Ewer J (2003) Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 130:2645–2656PubMedGoogle Scholar
  100. Patel M, Chung JS, Kay I, Mallet AI, Gibbon CR, Thompson K, Bacon JP, Coast GM (1994) Localization of Locusta-DP in locust CNS and hemolymph satisfies initial hormonal criteria. Peptides 15:591–602PubMedGoogle Scholar
  101. Petri B, Stengl M (1997) Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae. J Neurosci 17:4087–4093PubMedGoogle Scholar
  102. Petri B, Stengl M, Würden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282:3–19PubMedGoogle Scholar
  103. Petri B, Homberg U, Loesel R, Stengl M (2002) Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205:1459–1469PubMedGoogle Scholar
  104. Predel R, Neupert S, Wicher D, Gundel M, Roth S, Derst C (2004a) Unique accumulation of neuropeptides in an insect: FMRFamide related peptides in the cockroach, Periplaneta americana. Eur J Neurosci 20:1499–1513PubMedGoogle Scholar
  105. Predel R, Wegener C, Russell WK, Tichy SE, Russell DH, Nachman RJ (2004b) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474:379–392PubMedGoogle Scholar
  106. Predel R, Neupert S, Roth S, Derst C, Nässel DR (2005) Tachykinin-related peptide precursors in two cockroach species. FEBS Lett 272:3365–3375Google Scholar
  107. Pyza E, Meinertzhagen IA (2003) The regulation of circadian rhythms in the fly’s visual system: involvement of FMRFamide-like neuropeptides and their relationship to pigment-dispersing factor in Musca domestica and Drosophila melanogaster. Neuropeptides 37:277–289PubMedGoogle Scholar
  108. Radford JC, Davies SA, Dow JAT (2002) Systematic GPCR analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J Biol Chem 277:38810–38817PubMedGoogle Scholar
  109. Reischig T, Stengl M (2002) Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443:388–400PubMedGoogle Scholar
  110. Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886PubMedGoogle Scholar
  111. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802PubMedGoogle Scholar
  112. Riehle MA, Garczynski SF, Crim JW, Hill CA, Brown MR (2002) Neuropeptides and peptide hormones in Anopheles gambiae. Science 298:172–175PubMedGoogle Scholar
  113. Rosenkilde C, Cazzamali G, Williamson M, Hauser F, Sondergaard L, DeLotto R, Grimmelikhuijzen CJ (2003) Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochem Biophys Res Commun 309:485–494PubMedGoogle Scholar
  114. Saifullah ASM, Tomioka K (2003) Pigment-dispersing factor sets the night state of the medulla bilateral neurons in the optic lobe of the cricket, Gryllus bimaculatus. J Insect Physiol 49:231–239PubMedGoogle Scholar
  115. Sato S, Chuman Y, Matsushima A, Tominaga Y, Shimonigashi Y, Shimonigashi M (2002) A circadian neuropeptide, pigment-dispersing factor-PDF, in the last-summer cicada Meimuna opalifera: cDNA cloning and immunocytochemistry. Zool Sci 19:821–828PubMedGoogle Scholar
  116. Schachtner J, Trosowski B, D’Hanis W, Stubner S, Homberg U (2004) Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta. J Exp Biol 207:2389–2400PubMedGoogle Scholar
  117. Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea, Insecta). Arthropod Struct Devel 34:257–299Google Scholar
  118. Schneider N-L, Stengl M (2005) Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae. J Neurosci 25:5138–5147PubMedGoogle Scholar
  119. Schoofs L, Veelaert D, Holman GM, Hayes TK, De Loof A (1994) Partial identification, synthesis and immunolocalization of locustamyoinhibin, the third myoinhibiting neuropeptide isolated from Locusta migratoria. Regul Pept 52:139–156PubMedGoogle Scholar
  120. Schoofs L, Veelaert D, Vanden Broek J, De Loof A (1997) Peptides in the locusts, Locusta migratoria and Schistocerca gregaria. Peptides 18:145–156PubMedGoogle Scholar
  121. Schürmann F-W, Erber J (1990) FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light and electron microscopical study. Neuroscience 38:797–807PubMedGoogle Scholar
  122. Sehadová H, Sauman I, Sehnal F (2003) Immunocytochemical distribution of pigment-dispersing hormone in the cephalic ganglia of polyneopteran insects. Cell Tissue Res 312:113–125PubMedGoogle Scholar
  123. Settembrini BP, Nowicki S, Hökfelt T, Villar MJ (2003) Distribution of NPY and NPY-Y1 receptor-like immunoreactivities in the central nervous system of Triatoma infestans (Insects: Heteroptera). J Comp Neurol 460:141–154PubMedGoogle Scholar
  124. Shen P, Cai HN (2001) Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J Neurobiol 47:16–25PubMedGoogle Scholar
  125. Sinakevitch I, Farris SM, Strausfeld NJ (2001) Taurine-, asparatate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. J Comp Neurol 439:352–367PubMedGoogle Scholar
  126. Singaravel M, Fujisawa Y, Hisada M, Saifullah ASM, Tomioka K (2003) Phase shifts of the circadian locomotor rythms induced by pigment-dispersing factor in the cricket Gryllus bimaculatus. Zool Sci 20:1347–1354PubMedGoogle Scholar
  127. Siviter RJ, Coast GM, Winther ÅME, Nachman RJ, Taylor CAM, Shirras AD, Coates D, Isaac RE, Nässel DR (2000) Expression and functional characterisation of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J Biol Chem 275:23273–23280PubMedGoogle Scholar
  128. Stanewsky R (2003) Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J Neurobiol 54:111–147PubMedGoogle Scholar
  129. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  130. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37PubMedGoogle Scholar
  131. Strausfeld NJ, Homberg U, Kloppenburg P (2000) Parallel organization in honey bee mushroom bodies by peptidergic Kenyon cells. J Comp Neurol 424:179–195PubMedGoogle Scholar
  132. Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638PubMedGoogle Scholar
  133. Taghert PH, Veenstra JA (2003) Drosophila neuropeptide signaling. Adv Genet 49:1–65PubMedCrossRefGoogle Scholar
  134. Taghert PH, Roberts ME, Penn SCP, Jacobs PS (2000) Metamorphosis of tangential visual system neurons in Drosophila. Dev Biol 222:471–485PubMedGoogle Scholar
  135. Taghert PH, Hewes RS, Park JH, O’Brien MA, Han M, Peck ME (2001) Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila. J Neurosci 21:6673–6686PubMedGoogle Scholar
  136. Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Suwata M, Matsuo Y, Kato A, Tsujimoto A, Nakajima T, Kubo T (2004) Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera. Cell Tissue Res 316:281–293PubMedGoogle Scholar
  137. Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, Saitoe M (2003) Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40:1003–1011PubMedGoogle Scholar
  138. Tips A, Schoofs, L, Paemen L, Ma M, Blackburn M, Raina A, De Loof A (1993) Co-localization of locustamyotropin- and pheromone biosynthesis activating neuropeptide-like immunoreactivity in the central nervous system of five insect species. Comp Biochem Physiol 106A:195–207Google Scholar
  139. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157:263–277Google Scholar
  140. Utz S, Schachtner J (2005) Development of A-type allatostatin immunoreactivity in antennal lobe neurons of the sphinx moth Manduca sexta. Cell Tissue Res 320:149–162PubMedGoogle Scholar
  141. Vanden Broeck J (2001) Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22:241–254Google Scholar
  142. Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63PubMedGoogle Scholar
  143. Verleyen P, Huybrechts J, Baggerman G, Van Lommel A, De Loof A, Schoofs L (2004) SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem Biophys Res Commun 320:334–341PubMedGoogle Scholar
  144. Vitzthum H, Homberg U (1998) Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain. J Comp Neurol 390:455–469PubMedGoogle Scholar
  145. Vitzthum H, Homberg U, Agricola H (1996) Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol 369:419–437PubMedGoogle Scholar
  146. Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103:805–813PubMedGoogle Scholar
  147. Wen T, Parrish CA, Xu D, Wu Q, Shen P (2005) Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA 102:2141–2146PubMedGoogle Scholar
  148. Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool (Lond) 76:67–86CrossRefGoogle Scholar
  149. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079PubMedGoogle Scholar
  150. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370PubMedGoogle Scholar
  151. Winther ÅM, Siviter RJ, Isaac RE, Predel R, Nässel DR (2003) Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila. J Comp Neurol 464:180–196PubMedGoogle Scholar
  152. Winther ÅM, Acebes A, Ferrus A (2006) Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci 31:399–406PubMedGoogle Scholar
  153. Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 51:1–24PubMedGoogle Scholar
  154. Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147–161PubMedGoogle Scholar
  155. Wu Q, Zhao Z, Shen P (2005a) Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems. Nature Neurosci 8: 1350–1355PubMedGoogle Scholar
  156. Wu Q, Zhang Y, Xu J, Shen P (2005b) Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci USA 102:13289–13294PubMedGoogle Scholar
  157. Würden S, Homberg U (1995) Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 362:305–319PubMedGoogle Scholar
  158. Yasuyama K, Meinertzhagen IA, Schürmann F-W (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226PubMedGoogle Scholar
  159. Yu D, Keene AC, Srivatsan A, Waddell S, Davis RL (2005) Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123:945–957PubMedGoogle Scholar
  160. Závodská R, Sauman I, Sehnal F (2003) Distribution of PER protein, pigment-dispersing hormone, prothoracicotropic hormone, and eclosion hormone in the cephalic nervous system of insects. J Biol Rhythms 18:106–122PubMedGoogle Scholar
  161. Zhong Y, Pena LA (1995) A novel synaptic transmission mediated by a PACAP-like neuropeptide in Drosophila. Neuron 14:527–536PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ZoologyStockholm UniversityStockholmSweden
  2. 2.Department of Animal PhysiologyUniversity of MarburgMarburgGermany

Personalised recommendations