Cell and Tissue Research

, Volume 325, Issue 1, pp 55–65 | Cite as

Contribution of mesenterial muscle dedifferentiation to intestine regeneration in the sea cucumber Holothuria glaberrima

  • Ann Ginette Candelaria
  • Gisela Murray
  • Sharon K. File
  • José E. García-Arrarás
Regular Article


Holothurians (sea cucumbers) have been known from ancient times to have the capacity to regenerate their internal organs. In the species Holothuria glaberrima, intestinal regeneration involves the formation of thickenings along the free mesentery edge; these thickenings will later give rise to the regenerated organ. We have previously documented that a remodeling of the extracellular matrix and changes in the muscle layer occur during the formation of the intestinal primordium. In order to analyze these changes in depth, we have now used immunocytochemical techniques and transmission electron microscopy. Our results show a striking disorganization of the muscle layer together with myocyte dedifferentiation. This dedifferentiation involves nucleic activation, disruptions of intercellular junctions, and the disappearance of cell projections, but more prominently, the loss of the contractile apparatus by the formation and elimination of spindle-like structures. Muscle dedifferentiation can be seen as early as 2 days following evisceration and continues during the next 2 weeks of the regeneration process. Dedifferentiation of myocytes might result in cells that proliferate and give rise to new myocytes. Alternatively, dedifferentiating myocytes could give rise to cells with high nuclear-to-cytoplasmic ratios, with some being eliminated by apoptosis. Our results, together with those in other regeneration models, show that myocyte dedifferentiation is a common event in regeneration processes and that the dedifferentiated cells might play an important role in the formation of the new tissues or organs.


Regeneration Dedifferentiation Organogenesis Muscle Sea cucumber Holothuria glaberrima (Echinodermata) 



We thank Griselle Valentin for technical assistance with the immunocyochemical experiments and Mr. Camillo Cangani for assistance with the transmission electron microscope.


  1. Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev 3:566–574CrossRefGoogle Scholar
  2. Byrne M (1985) Evisceration behavior and the seasonal incidence of evisceration in the holothurian Eupentacta quinquesemita (Selenka). Ophelia 24:91–101Google Scholar
  3. Byrne M (2001) The morphology of autotomy structures in the sea cucumber Eupentacta quinquesemita before and during evisceration. J Exp Biol 204:849–863PubMedGoogle Scholar
  4. Candia-Carnevali MD, Bonasoro F (2001) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426PubMedCrossRefGoogle Scholar
  5. Candia-Carnevali MD, Bonasoro F, Patrono M, Thorndyke MC (1998) Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potencial of arm explants. Dev Genes Evol 208:421–430PubMedCrossRefGoogle Scholar
  6. Cornec JP, Cresp J, Delye P, Hoarau F, Reynaud G (1987) Tissue responses and organogenesis during regeneration in the oligochete Limnodrilus hoffmeisteri (Clap.). Can J Zool 65:403–414CrossRefGoogle Scholar
  7. Dolmatov IY (1992) Regeneration of aquapharyngeal complex in the holothurian Eupentacta fraudatrix (Holothuria, Dendrochitrota). Monogr Dev Biol 23:40–50PubMedGoogle Scholar
  8. Dolmatov IY, Ginanova TT (2001) Muscle regeneration in holothurians. Microsc Res Tech 55:452–463PubMedCrossRefGoogle Scholar
  9. Dolmatov IY, Eliseikina MG, Bulgakov AA, Ginanova TT, Lamash NE, Korchagin VP (1996) Muscle regeneration in the holothurian Stichopus japonicus. Rouxs Arch Dev Biol 205:486–493CrossRefGoogle Scholar
  10. Echeverri K, Tanaka EM (2002) Mechanisms of muscle dedifferentiation during regeneration. Semin Cell Dev Biol 13:353–360PubMedCrossRefGoogle Scholar
  11. Echeverri K, Clarke JDW, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164PubMedCrossRefGoogle Scholar
  12. Emson RH, Wilkie IC (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Annu Rev 18:155–250Google Scholar
  13. Feral JP, Massin C (1982) Digestive systems: Holothuroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 191–212Google Scholar
  14. Fontes M, Coulon J, Delgrossi MH, Thouveny Y (1983) Muscle dedifferentiation and contractile protein synthesis during post-traumatic regeneration by Owenia fusiformis (polychaete annelid). Cell Differ 13:267–282PubMedCrossRefGoogle Scholar
  15. García-Arrarás JE, Greenberg MJ (2001) Visceral regeneration in holothurians. Microsc Res Tech 55:438–451PubMedCrossRefGoogle Scholar
  16. García-Arrarás JE, Estrada-Rodgers L, Santiago R, Torres II, Díaz-Miranda L, Torres-Avillán I (1998) Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J Exp Zool 281:288–304PubMedCrossRefGoogle Scholar
  17. García-Arrarás JE, Díaz-Miranda L, Torres-Vázquez I, File S, Jiménez L, Rivera-Bermudez K, Arroyo E, Cruz W (1999) Regeneration of the enteric nervous system in the sea cucumber Holothuria glaberrima. J Comp Neurol 406:461–475PubMedCrossRefGoogle Scholar
  18. García-Arrarás JE, Rojas-Soto M, Jiménez LB, Díaz-Miranda L (2001) The enteric nervous system of echinoderms: unexpected complexity revealed by neurochemical analysis. J Exp Biol 204:865–873PubMedGoogle Scholar
  19. Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regeneration Amblystoma limbs. Dev Biol 1:555–585CrossRefGoogle Scholar
  20. Hyman L (1955) The invertebrates: Echinodermata. McGraw-Hill, New YorkGoogle Scholar
  21. Kumar A, Velloso CP, Imokawa Y, Brockes JP (2000) Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 218:125–136PubMedCrossRefGoogle Scholar
  22. Leibson NL (1992) Regeneration of digestive tube in holothurians Stichopus japonicus and Eupentacta fraudatrix. Monogr Dev Biol 23:51–61PubMedGoogle Scholar
  23. Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci USA 90:7230–7234PubMedCrossRefGoogle Scholar
  24. Mashanov VS, Dolmatov IY (2001) Regeneration of digestive tract in the pentactulae of the far-eastern holothurian Eupentacta fraudatrix (Holothuroidea: Dendrochirota). Invert Reprod Dev 39:143–151Google Scholar
  25. Murray G, García-Arrarás JE (2004) Myogenesis during holothurian intestinal regeneration. Cell Tissue Res 318:515–524PubMedCrossRefGoogle Scholar
  26. Quiñones JL, Rosas R, Ruiz DC, García-Arrarás JE (2002) Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima. Dev Biol 250:181–197PubMedCrossRefGoogle Scholar
  27. Rieger RM, Lombardi J (1987) Ultrastructure of the coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 107:191–208CrossRefGoogle Scholar
  28. Sánchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? BioEssays 22:578–590PubMedCrossRefGoogle Scholar
  29. Smiley S (1994) Holothuroidea. In: Harrison F, Chia FS (eds) Microscopic anatomy of invertebrates, vol 14. Wiley Liss, New York, pp 401–471Google Scholar
  30. Tanaka EM (2003) Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev 13:497–501PubMedCrossRefGoogle Scholar
  31. VandenSpiegel D, Jangoux M, Flammang P (2000) Maintaining the line of defense: regeneration of Cuvierian tubules in the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Biol Bull 198:34–49PubMedCrossRefGoogle Scholar
  32. Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (1994) Immunology of annelids. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ann Ginette Candelaria
    • 1
  • Gisela Murray
    • 1
  • Sharon K. File
    • 1
  • José E. García-Arrarás
    • 1
  1. 1.Department of BiologyUniversity of Puerto RicoRío PiedrasPuerto RicoUSA

Personalised recommendations