Cell and Tissue Research

, Volume 324, Issue 3, pp 403–410 | Cite as

Movement of vault particles visualized by GFP-tagged major vault protein

  • Marco Slesina
  • Elisabeth M. Inman
  • Ann E. Moore
  • Joshua I. Goldhaber
  • Leonard H. Rome
  • Walter VolknandtEmail author
Regular Article


Vaults are abundant large ribonucleoprotein particles. They frequently colocalize with microtubules and accumulate in filamentous actin-rich lamellipodia. To examine the movement of vaults in living cells, a chimera between the green fluorescent protein and the major vault protein was created. This fusion protein assembled into vault particles as assayed by biochemical fractionation and direct observation of living or fixed cells. By fluorescence recovery after photobleaching, we analyzed the bulk transport of vault particles into neuritic tips of PC12 cells treated with nerve growth factor. Confocal laser scanning microscopy demonstrated co-localization of the major vault protein and microtubules. Video microscopy indicated that, whereas the majority of vault particles were stationary, some individual vault particles moved rapidly, consistent with the action of a microtubule-based or actin-based molecular motor.


Ribonucleoprotein particles Green fluorescent protein Major vault protein Microtubule association Vault motility Rat phaeochromocytoma cells 



The authors thank Dr. Valerie Kickhoefer and Prof. Herbert Zimmermann for reading the manuscript and making valuable suggestions.


  1. Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP (1982) Fast axonal transport in squid giant axon. Science 218:1127–1129PubMedCrossRefGoogle Scholar
  2. Chugani DC, Rome LH, Kedersha NL (1993) Localization of vault particles to the nuclear pore complex. J Cell Sci 106:23–29PubMedGoogle Scholar
  3. Chung J-H, Ginn-Pease ME, Eng C (2005) Phosphatase and tensin homologue deleted on chromosonme 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res 65:4108–4116PubMedCrossRefGoogle Scholar
  4. Dalton WS, Scheper RJ (1999) Lung resistance-related protein: determining its role in multidrug resistance. J Nat Canc Inst 91:1604–1605CrossRefGoogle Scholar
  5. Eichenmüller B, Kedersha N, Solovyeva E, Everly P, Lang J, Himes RH, Suprenant KA (2003) Vaults bind directly to microtubules via their caps and not their barrels. Cell Motil Cytoskeleton 56:225–236PubMedCrossRefGoogle Scholar
  6. Hamill DR, Suprenant KA (1997) Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport. Dev Biol 190:117–128PubMedCrossRefGoogle Scholar
  7. Hammerschlag R, Cyr JL, Brady ST (1994) Axonal transport and the neuronal cytoskeleton. In: Siegel GJ, et al (eds) Basic neurochemistry: molecular, cellular, and medical aspects. Raven, New York, pp 545–571Google Scholar
  8. Herrmann C, Volknandt W, Wittich B, Kellner R, Zimmermann H (1996) The major vault protein (MVP100) is contained in cholinergic nerve terminals of electric ray electric organ. J Biol Chem 271:13908–13915PubMedCrossRefGoogle Scholar
  9. Herrmann C, Golkaramnay E, Inman E, Rome LH, Volknandt W (1999) Recombinant major vault protein is targeted to neuritic tips of PC12 cells. J Cell Biol 144:1163–1172PubMedCrossRefGoogle Scholar
  10. Hosaka M, Hammer RE, Südhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24:377–387PubMedCrossRefGoogle Scholar
  11. Huffman KE, Corey DR (2005) Major vault protein does not play a role in chemoresistance or drug localization in a non-small cell lung cancer cell line. Biochemistry 44:2253–2261PubMedCrossRefGoogle Scholar
  12. Kaether C, Skehel P, Dotti CG (2000) Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell 11:1213–1224PubMedGoogle Scholar
  13. Kedersha NL, Rome LH (1986) Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol 103:699–709PubMedCrossRefGoogle Scholar
  14. Kedersha NL, Rome LH (1990) Vaults: large cytoplasmic RNPs that associate with cytoskeletal elements. Mol Biol Rep 14:121–122PubMedCrossRefGoogle Scholar
  15. Kedersha NL, Miquel MC, Bittner D, Rome LH (1990) Vaults. II Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J Cell Biol 110:895–901PubMedCrossRefGoogle Scholar
  16. Kedersha NL, Heuser JE, Chugani DC, Rome LH (1991) Vaults. III Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J Cell Biol 112:225–235PubMedCrossRefGoogle Scholar
  17. Kickhoefer VA, Rome LH (1994) The sequence of a cDNA encoding the major vault protein from Rattus norvegicus. Gene 151:257–260PubMedCrossRefGoogle Scholar
  18. Kickhoefer VA, Searles RP, Kedersha NL, Garber ME, Johnson DL, Rome LH (1993) Vault RNP particles from rat and bullfrog contain a related small RNA that is transcribed by RNA polymerase III. J Biol Chem 268:7868–78173PubMedGoogle Scholar
  19. Kickhoefer VA, Vasu SK, Rome LH (1996) Vaults are the answer, what is the question? Trends Cell Biol 6:174–178PubMedCrossRefGoogle Scholar
  20. Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999a) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146:917–928PubMedCrossRefGoogle Scholar
  21. Kickhoefer VA, Stephen AG, Harrington L, Robinson MO, Rome LH (1999b) Vaults and telomerase share a common subunit, TEP1. J Biol Chem 274:32712–32718PubMedCrossRefGoogle Scholar
  22. Kitazono M, Sumizawa T, Takebajashi Y, Chen ZS, Furokawa T, Nagayama S, Tani A, Takao S, Aikou T, Akiyama SI (1999) Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Nat Canc Inst 91:1647–1653CrossRefGoogle Scholar
  23. Kitazono M, Okumura H, Ikeda R, Sumizawa T, Furukawa T, Nagayama S, Seto K, Aikou T, Akiyama SI (2001) Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer 91:126–131PubMedCrossRefGoogle Scholar
  24. Kolli S, Zito CI, Mossink MH, Wiemer EAC (2004) The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J Biol Chem 279:29374–29385PubMedCrossRefGoogle Scholar
  25. Kong LB, Siva AC, Rome LH, Stewart PL (1999) Structure of the vault, a ubiquitious cellular component. Structure 7:371–379PubMedCrossRefGoogle Scholar
  26. Kong LB, Siva AC, Kickhoefer VA, Rome LH, Stewart PL (2000) RNA location and modeling of a WD40 repeat domain within the vault. RNA 6:1–11CrossRefGoogle Scholar
  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  28. Li JY, Volknandt W, Dahlström A, Herrmann C, Blasi J, Das B, Zimmermann H (1999) Axonal transport of ribonucleoprotein particles (vaults). Neuroscience 91:1055–1065PubMedCrossRefGoogle Scholar
  29. Luby-Phelps K, Castle PE, Taylor DL, Lanni F (1987) Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci USA 84:4910–4913PubMedCrossRefGoogle Scholar
  30. Mossink MH, Van Zon A, Scheper RJ, Sonneveld P, Wiemer EAC (2003) Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene 22:7458–7467PubMedCrossRefGoogle Scholar
  31. Rome LH, Kedersha N, Chugani D (1991) Unlocking vaults: organelles in search of a function. Trends Cell Biol 1:47–50PubMedCrossRefGoogle Scholar
  32. Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJ, Clevers HC, Scheper RJ (1995) The drug resistance-related protein LRP is the human major vault protein.Nat Med 1:578–582PubMedCrossRefGoogle Scholar
  33. Slesina M, Inman EM, Rome LH, Volknandt W (2005) Nuclear localization of the major vault protein in U373 cells. Cell Tissue Res 321:97–104PubMedCrossRefGoogle Scholar
  34. Stephen AG, Raval-Fernandez S, Huyn T, Torres M, Kickhoefer VA, Rome LH (2001) Assembly of vault-like particles in insect cells expressing only the major vault protein. J Biol Chem 276:23217–23220PubMedCrossRefGoogle Scholar
  35. Suprenant KA (2002) Vault ribonucleoprotein particles: sarcophagi, gondolas, or safety deposit boxes? Biochemistry 41:14447–14454PubMedCrossRefGoogle Scholar
  36. Vallee RB, Bloom GS (1991) Mechanisms of fast and slow axonal transport. Annu Rev Neurosci 14:59–92PubMedCrossRefGoogle Scholar
  37. Van Zon A, Mossink MH, Scheper RJ, Sonneveld P, Wiemer EA (2003a) The vault complex. Cell Mol Life Sci 60:1828–1837PubMedCrossRefGoogle Scholar
  38. Van Zon A, Mossink MH, Schoester M, Houtsmuller AB, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EA (2003b) The formation of vault-tubes: a dynamic interaction between vaults and vault PARP. J Cell Sci 116:4391–4400PubMedCrossRefGoogle Scholar
  39. Van Zon A, Mossink MH, Schoester M, Scheper RJ, Sonneveld P, Wiemer EA (2003c) Efflux kinetics and intracellular distribution of daunorubicin are not affected by major vault protein/lung resitance-related protein (vault) expression. Cancer Res 64:4887–4892CrossRefGoogle Scholar
  40. Volknandt W, Herrmann C (1997) The major protein of a large ribonucleoprotein particle (VAULT) is localized in nerve terminals. In: Teelken AW, Korf J (eds) Neurochemistry: cellular, molecular, and clinical aspects. Plenum, London, pp 675–681Google Scholar
  41. Yi C, Li S, Chen X, Wiemer EAC, Wang J, Wei N, Deng XW (2005) Major vault protein, in concert with constitutively photomorphogenic 1, negatively regulates c-jun-mediated activator protein 1 transcription in mammalian cells. Cancer Res 65:5835–5840PubMedCrossRefGoogle Scholar
  42. Yu Z, Fotouhi-Ardakani N, Wu L, Maoui M, Wang S, Banville D, Shen S-H (2003) PTEN associates with the vault particles in HeLa cells. J Biol Chem 277:40247–40252CrossRefGoogle Scholar
  43. Zheng C-L, Sumizawa T, Che X-F, Tsuyama S, Furukawa T, Haraguchi M, Gao H, Gotanda T, Jueng H-C, Murata F, Akiyama S-i (2004) Characterization of MVP and VPARP assembly into vaultribonucleoprotein complexes. Biochem Biophys Res Comm 325:100–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marco Slesina
    • 1
  • Elisabeth M. Inman
    • 2
  • Ann E. Moore
    • 2
  • Joshua I. Goldhaber
    • 3
  • Leonard H. Rome
    • 2
  • Walter Volknandt
    • 1
    Email author
  1. 1.Biocenter, Zoological InstituteJ. W. Goethe UniversityFrankfurtGermany
  2. 2.Department of Biological ChemistryUCLA School of Medicine and the Jonsson Comprehensive Cancer CenterLos AngelesUSA
  3. 3.Department of Medicine/CardiologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations