Extracellular matrix changes in knee joint cartilage following bone-active drug treatment

  • Horst Claassen
  • Christian Cellarius
  • Katharina E. Scholz-Ahrens
  • Jürgen Schrezenmeir
  • Claus-Christian Glüer
  • Michael Schünke
  • Bodo Kurz
Regular Article

Abstract

Certain drugs or treatments that are known to affect bone quality or integrity might have side effects on the extracellular matrix of articular cartilage. We investigated the effects of vitamin D and calcium deficiency, estrogen deficiency, and hypercortisolism alone or in combination with bisphosphonates or sodium fluoride in an animal model, viz., the Göttingen miniature pig (n=29). The articular cartilage from knee joints was analyzed for its content of glycosaminoglycans (GAGs, as macromolecules responsible for the elasticity of articular cartilage) by a spectrometric method with dimethylene blue chloride. In cryo- or paraffin sections, alkaline phosphatase (AP, as an enzyme indicating mineralization or reorganization of articular cartilage matrix) was localized by enzyme histochemistry, and positive cells were counted, whereas differently sulfated GAGs were stained histochemically. A significant decrease in GAG content was measured in ovariectomized and long-term glucocorticoid-treated animals compared with untreated animals. In the glucocorticoid/sodium fluoride group, GAGs were significantly diminished, and significantly fewer AP-positive chondrocytes were counted compared with the control. GAG content was slightly higher, and significantly more AP-positive chondrocytes were counted in short-term glucocorticoid-treated animals then in the control group. GAGs, as part of proteoglycans, are responsible for the water-storage capacity that gives articular cartilage its unique property of elasticity. Thus, ovariectomy and long-term glucocorticoid therapy, especially when combined with sodium fluoride, have detrimental effects on this tissue.

Keywords

Articular cartilage Glycosaminoglycans Water content Bone-active drug treatment Göttingen miniature pigs 

Notes

Acknowledgements

We thank Ms. R. Kirsch, Ms. C. Kremling, and Mr. F. Lichte for excellent assistance during the performance of the experiments, Dr. A. Caliebe (Department of Stochastics at the Mathematical-Natural Sciences Faculty, Kiel University) for help with the statistical evaluation of the data, and Horst Fischer and Jochen Kunze for conscientious animals care.

References

  1. Almqvist KF, Wang L, Broddelez C, Verdonk R, Veys EM, Verbruggen G (2000) The influence of hydrocortisone on aggrecan metabolism in human articular chondrocyte cultures: comparison of two different matrices. Clin Exp Rheumatol 18:665–673PubMedGoogle Scholar
  2. Bacic G, Liu KJ, Goda F, Hoopes PJ, Rosen GM, Swartz HM (1997) MRI contrast enhanced study of cartilage proteoglycan degradation in the rabbit knee. Magn Reson Med 37:764–768PubMedCrossRefGoogle Scholar
  3. Bang S, Boivin G, Gerstler JC, Baud CA (1985) Distribution of fluoride in calcified cartilage of a fluoride-treated osteoporotic patient. Bone 6:207–210CrossRefPubMedGoogle Scholar
  4. Bonassar LJ, Sandy JD, Lark MW, Plaas AH, Frank EH, Grodzinsky AJ (1997) Inhibition of cartilage degradation and changes in physical properties induced by IL-1-beta and retinoic acid using matrix metalloproteinase inhibitors. Arch Biochem Biophys 15:404–412CrossRefGoogle Scholar
  5. Buckley LM, Leib ES, Cartularo KS, Vacek PM, Cooper SM (1996) Calcium and vitamin D3 supplementation prevents bone loss in the spine secondary to low-dose corticosteroids in patients with rheumatoid arthritis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 125:961–968PubMedGoogle Scholar
  6. Burstone MS (1962) Enzyme histochemistry and its application in the study of neoplasms. Academic Press, New YorkGoogle Scholar
  7. Chkhol KZ, Bykov VA, Nikolaeva SS, Rebrova GA, Roshchina AA, Rumiantseva NV, Iakovleva LV, Koroleva OA, Rebrov LB (2001) Changes in biochemical characteristics of collagen and the cartilage water in osteoarthritis. Vopr Med Khim 47:498–505PubMedGoogle Scholar
  8. Claassen H, Hassenpflug J, Schünke M, Sierralta W, Thole H, Kurz B (2001) Immunhistochemical detection of estrogen receptor α in articular chondrocytes from cows, pigs and humans: in situ and in vitro results. Ann Anat 183:223–227PubMedGoogle Scholar
  9. Claassen H, Hornberger F, Scholz-Ahrens K, Schünke M, Schrezenmeir J, Kurz B (2002) The effect of estrogens and dietary calcium deficiency on the extracellular matrix of articular cartilage in Göttingen miniature pigs. Ann Anat 184:141–148PubMedGoogle Scholar
  10. Doyle AJ, Stewart AA, Constable PD, Eurell JA, Freeman DE, Griffon DJ (2005) Effects of sodium hyaluronate and methylprednisolone acetate on proteoglycan synthesis in equine articular cartilage explants. Am J Vet Res 66:48–53CrossRefPubMedGoogle Scholar
  11. Ekman S, Rodriguez-Martinez H (1991) Ultrastructural localization of alkaline phosphatase activity in the normal and osteochondrotic joint cartilage of growing pigs. Acta Anat 140:26–33PubMedGoogle Scholar
  12. Erb A, Brenner H, Gunther KP, Sturmer T (2000) Hormone replacement therapy and patterns of osteoarthritis: baseline data from the Ulm Osteoarthritis Study. Ann Rheum Dis 59:105–109CrossRefPubMedGoogle Scholar
  13. Esquisatto MA, Pimentel ER, Gomes L (1997) Extracellular matrix composition of different regions of the knee joint cartilage in cattle. Ann Anat 179:433–437PubMedGoogle Scholar
  14. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177PubMedGoogle Scholar
  15. Fernandez Lemos SM, Caldarini MI, Kofoed JA, Suarez CG, Davison MR, Palmieri JE (1988) Alteraciones en la matrix organica del hueso y cartilago de rata por el uso prolongado de fluoruro de sodio. Medicina (B Aires) 48:45–48Google Scholar
  16. Frith JC, Rogers MJ (2003) Antagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro. J Bone Miner Res 18:204–212PubMedCrossRefGoogle Scholar
  17. Froimson MI, Ratcliffe A, Gardner TR, Mow VC (1997) Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. Osteoarthritis Cartilage 5:377–386CrossRefPubMedGoogle Scholar
  18. Fubini SL, Todhunter RJ, Burton-Wurster N, Vernier-Singer M, MacLeod JN (2001) Corticosteroids alter the differentiated phenotype of articular chondrocytes. J Orthop Res 19:688–695CrossRefPubMedGoogle Scholar
  19. Gallagher JA, Beresford JN, McGuire MKB, Ebsworth NM, Meats JE, Gowen M, Elford P, Wright D, Poser J, Coulton LA, Sharrard M, Imbimbo B, Kanis JA, Russell RGG (1984) Effects of glucocorticoids and anabolic steroids on cells derived from human skeletal and articular tissues in vitro. Adv Exp Med Biol 171:279–291PubMedGoogle Scholar
  20. Gokhale JA, Frenkel SR, Dicesare PE (2004) Estrogen and osteoarthritis. Am J Orthop 33:71–80PubMedGoogle Scholar
  21. Ham KD, Oegema TR, Loeser RF, Carlson CS (2004) Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus monkeys. Osteoarthritis Cartilage 12:160–168CrossRefPubMedGoogle Scholar
  22. Hanna FS, Wluka AE, Bell RJ, Davis SR, Cicuttini FM (2004) Osteoarthritis and the postmenopausal woman: epidemiological, magnetic resonance imaging, and radiological findings. Semin Arthritis Rheum 34:631–636CrossRefPubMedGoogle Scholar
  23. Harbrow DJ, Robinson MG, Monsour PA (1992) The effect of chronic fluoride administration on rat condylar cartilage. Aust Dent J 37:55–62PubMedGoogle Scholar
  24. Hardman JG, Limbird LE (2001) Goodman and Gilman's. The pharmacological basis of therapeutics. McGraw-Hill, New YorkGoogle Scholar
  25. Havelka S, Horn V, Spohrova D, Valouch P (1984) The calcified-noncalcified cartilage interface: the tidemark. Acta Biol Hung 35:271–279PubMedGoogle Scholar
  26. Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM, Delaisse, JM, Christgau S (2004) Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 6:R169–R180CrossRefPubMedGoogle Scholar
  27. Jiang Y, Zhao J, White DL, Genant HK (2000) Micro CT and micro MR imaging of 3D architecture of animal skeleton. J Musculoskelet Neuronal Interact 1:45–51PubMedGoogle Scholar
  28. Kaiser H, Kley HK (1997) Cortisontherapie. Corticoide in Klinik und Praxis. Thieme, StuttgartGoogle Scholar
  29. Keck E (2003) Therapy of postmenopausal osteoporosis. Orthopäde 32:1104–1109CrossRefPubMedGoogle Scholar
  30. Kinney RC, Schwartz Z, Week K, Lotz MK, Boyan BD (2005) Human articular chondrocytes exhibit sexual dimorphism in their responses to 17beta-estradiol. Osteoarthritis Cartilage 13:330–337CrossRefPubMedGoogle Scholar
  31. Kragstrup J, Richards A, Fejerskov O (1989) Effects of fluoride on cortical bone remodeling in the growing domestic pig. Bone 10:421–424CrossRefPubMedGoogle Scholar
  32. Liess C, Lüsse S, Karger N, Heller M, Glüer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage 10:907–913CrossRefPubMedGoogle Scholar
  33. Liu BC, Xu ZL, Miao W, Xu YY, Xu M, Qian XJ, You BR, Yuan BH, Kang N (2003) Expression of type II collagen gene and structural change in bone tissues of rats with experimental fluorosis. Zhonghua Yu Fang Yi Xue Za Zhi 37:243–245PubMedGoogle Scholar
  34. Mackintosh D, Mason RM (1988) Pharmacological actions of 17β-oestradiol on articular cartilage chondrocytes and chondrosarcoma chondrocytes in the absence of oestrogen receptors. Biochim Biophys Acta 964:295–302PubMedGoogle Scholar
  35. Mc Kern NM (1983) Stimulatory effect of phenylmethylsulfonyl fluoride upon sulfate uptake by costal cartilage. Aust J Biol Sci 36:35–40PubMedGoogle Scholar
  36. Meunier PJ (1996) Bone forming agents. In: Papapoulos SE (ed) Osteoporosis 1996, Proceedings of the World Congress on Osteoporosis, Amsterdam, pp 305–313Google Scholar
  37. Monier-Faugere MC, Geng Z, Paschalis EP, Qi Q, Arnala I, Bauss F, Boskey AL, Malluche HH (1999) Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res 14:1768–1778PubMedCrossRefGoogle Scholar
  38. Mühlemann C, Green J, Williams JM, Kuettner KE, Thonar EJ, Sumner DR (2002) The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 20:226–233CrossRefGoogle Scholar
  39. Muhlen D von, Morton D, Muhlen CA von, Barrett-Connor E (2002) Postmenopausal estrogen and increased risk of clinical osteoarthritis at the hip, hand, and knee in older women. J Womens Health Gend Based Med 11:511–518CrossRefPubMedGoogle Scholar
  40. Mushtaq T, Farquharson C, Seawright E, Ahmed SF (2002) Glucocorticoid effects on chondrogenesis, differentiation and apoptosis in the murine ATDC5 chondrocyte cell line. J Endocrinol 175:705–713CrossRefPubMedGoogle Scholar
  41. Naka MH, Morita Y, Ikeuchi K (2005) Influence of proteoglycan contents and of tissue hydration on the frictional characteristics of articular cartilage. Proc Inst Mech Eng [H] 219:175–182Google Scholar
  42. Nikolaeva SS, Chkhol KZ, Bykov VA, Roshchina AA, Iakovleva LV, Koroleva OA, Omel’ianenko NP, Rebrov LB (2000) Water-exchange processes in hyaline cartilage and its basic components in a normal state and in osteoarthritis. Vopr Med Khim 46:581–590PubMedGoogle Scholar
  43. Ögema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr (1997) The interactions of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37:324–332CrossRefPubMedGoogle Scholar
  44. Parazzini F (2003) Menopausal status, hormone replacement therapy use and risk of self-reported physician-diagnosed osteoarthritis in women attending menopause clinics in Italy. Maturitas 46:207–212CrossRefPubMedGoogle Scholar
  45. Patwari P, Kurz B, Sandy JD, Grodzinsky AJ (2000) Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch Biochem Biophys 374:79–85CrossRefPubMedGoogle Scholar
  46. Pfander D, Swoboda B, Kirsch T (2001) Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 159:1777–1783PubMedGoogle Scholar
  47. Ravn P, Warming L, Christgau S, Christiansen C (2004) The effect on cartilage of different forms of application of postmenopausal estrogen therapy: comparison of oral and transdermal therapy. Bone 35:1216–1221CrossRefPubMedGoogle Scholar
  48. Rees JA, Ali SY (1988) Ultrastructural localisation of alkaline phosphatase activity in osteoarthritic human articular cartilage. Ann Rheum Dis 47:747–753PubMedGoogle Scholar
  49. Reginster JY, Kvasz A, Bruyere O, Henrotin Y (2003) Is there any rationale for prescribing hormone replacement therapy (HRT) to prevent or to treat osteoarthritis? Osteoarthritis Cartilage 11:87–91CrossRefPubMedGoogle Scholar
  50. Roach HI (1999) Association of matrix acid and alkaline phosphatase with mineralization of cartilage and endochondral bone. Histochem J 31:53–61CrossRefPubMedGoogle Scholar
  51. Rosner IA, Goldberg VM, Getzky L, Moskowitz RW (1979) Effects of estrogen on cartilage and experimentally induced osteoarthritis. Arthritis Rheum 22:52–58PubMedCrossRefGoogle Scholar
  52. Sachs L (1992) Angewandte Statistik - Anwendung statistischer Methoden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  53. Schanler RJ, Abrams SA, Sheng HP (1991) Calcium and phosphorus deficiencies affect mineral distribution in neonatal miniature piglets. Am J Clin Nutr 54:420–424PubMedGoogle Scholar
  54. Scholz H, Schwabe U (2005) Taschenbuch der Arzneibehandlung. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  55. Scholz-Ahrens KE, Delling G, Jungblut PW, Kallweit E, Barth CA (1996) Effect of ovarectomy on bone histology and plasma parameters of bone metabolism in nulliparous and multiparous sows. Z Ernährungswiss 35:13–21CrossRefPubMedGoogle Scholar
  56. Scholz-Ahrens KE, Delling G, Stampa B, Barkmann R, Timm W, Schrezenmeir J, Glüer CC (2000) Bone mineral density and trabecular structure in steroid-induced osteoporosis in minipigs. J Bone Min Res 15:542Google Scholar
  57. Scott JE, Dorling J (1965) Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions. Histochem 5:221–223CrossRefGoogle Scholar
  58. Siczkowski M, Watt FM (1990) Subpopulations of chondrocytes from different zones of pig articular cartilage: isolation, growth and proteoglycan synthesis in culture. J Cell Sci 97:349–360PubMedGoogle Scholar
  59. Stephens M, Kwan APL, Bayliss MT, Archer CW (1992) Human articular surface chondrocytes initiate alkaline phosphatase and type X collagen synthesis in suspension culture. J Cell Sci 103:1111–1116PubMedGoogle Scholar
  60. Tetlow LC, Woolley DE (2001) Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthritis Cartilage 9:423–431CrossRefPubMedGoogle Scholar
  61. Thomsen M, Strachwitz B von, Loew M, Cotta H, Kirsch S, Schunk O, Kubein-Meesenburg D (1997) The Göttinger minipig as an animal model in hip endoprosthesis. Anatomy, anesthesia, operation results. Z Orthop Ihre Grenzgeb 135:58–62PubMedCrossRefGoogle Scholar
  62. Verhoeven AC, Boers M (1997) Limited bone loss due to corticosteroids; a systematic review of prospective studies in rheumatoid arthritis and other diseases. J Rheumatol 24:1495–1503PubMedGoogle Scholar
  63. Wang J, Elewaut D, Hoffman I, Veys EM, Verbruggen G (2004) Physiological levels of hydrocortisone maintain an optimal chondrocyte extracellular matrix metabolism. Ann Rheum Dis 63:61–66CrossRefPubMedGoogle Scholar
  64. Wassilev W, Owtscharov WL (1972) Veränderungen am Gelenkknorpel nach Einwirkung von Hydrocortison. Arch Orthop Unfallchirurgie 72:21–27CrossRefGoogle Scholar
  65. Wluka AE, Davis SR, Bailey M, Stuckey SL, Cicuttini FM (2001) Users of oestrogen replacement therapy have more knee cartilage than non-users. Ann Rheum Dis 60:332–336CrossRefPubMedGoogle Scholar
  66. Xu Y, Pritzker KP, Cruz TF (1994) Characterization of chondrocyte alkaline phosphatase as a potential mediator in the dissolution of calcium pyrophosphate dihydrate crystals. J Rheumatol 21:912–919PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Horst Claassen
    • 1
    • 2
  • Christian Cellarius
    • 2
  • Katharina E. Scholz-Ahrens
    • 3
  • Jürgen Schrezenmeir
    • 3
  • Claus-Christian Glüer
    • 4
  • Michael Schünke
    • 2
  • Bodo Kurz
    • 2
  1. 1.Institut für Anatomie und Zellbiologie der Martin-Luther-Universität Halle-WittenbergHalleGermany
  2. 2.Anatomisches Institut der Christian-Albrechts-Universität KielKielGermany
  3. 3.Institut für Physiologie und Biochemie der Ernährung der Bundesforschungsanstalt für Ernährung und Lebensmittel, Standort KielKielGermany
  4. 4.Medizinische Physik, Klinik für Diagnostische RadiologieUniversitätsklinikum Schleswig-Holstein, Campus KielKielGermany

Personalised recommendations