Skip to main content

Advertisement

Log in

In vitro characterization of human dental pulp cells: various isolation methods and culturing environments

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Our purpose was to characterize human dental pulp cells isolated by various methods and to examine the behavior of cells grown under various conditions for the purpose of pulp/dentin tissue engineering and regeneration. We compared the growth of human pulp cells isolated by either enzyme digestion or the outgrowth method. Expression of dentin sialophosphoprotein, Cbfa1, and two types of collagen (I and III) in these cells was examined by Western blot or reverse transcription/polymerase chain reaction. Growth of pulp cells on dentin and in collagen gel was also characterized. We found that different isolation methods give rise to different populations or lineages of pulp cells during in vitro passage based on their collagen gene expression patterns. Cells isolated by enzymedigestion had a higher proliferation rate than those isolated by outgrowth. Pulp cells did not proliferate or grew minimally on chemically and mechanically treated dentin surface and appeared to establish an odontoblast-like morphology with a cytoplasmic process extending into a dentinal tubule as revealed by scanning electron microscopy. The contraction of the collagen matrix caused by pulp cells was dramatic: down to 34% on day 14. Our data indicate that (1) the choice of the pulp cell isolation method may affect the distribution of the obtained cell populations, (2) a treated dentin surface might still promote odontoblast differentiation, and (3) a collagen matrix may not be a suitable scaffold for pulp tissue regeneration because of the marked contraction caused by pulp cells in the matrix. The present study thus provides important information and a basis for further investigations pre-requisite to establishing pulp tissue engineering/regeneration protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • About I, Bottero MJ, Denato P de, Camps J, Franquin JC, Mitsiadis TA (2000) Human dentin production in vitro. Exp Cell Res 258:33–41

    Article  PubMed  CAS  Google Scholar 

  • Alsberg E, Hill EE, Mooney DJ (2001) Craniofacial tissue engineering. Crit Rev Oral Biol Med 12:64–75

    Article  PubMed  CAS  Google Scholar 

  • Batouli S, Miura M, Brahim J, T.W.Tsutsui, Fisher LW, Gronthos S, Robey PG, Shi S (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82:976–981

    PubMed  CAS  Google Scholar 

  • Bohl KS, Shon J, Rutherford B, Mooney DJ (1998) Role of synthetic extracellular matrix in development of engineered dental pulp. J Biomater Sci Polym Ed 9:749–764

    Article  PubMed  CAS  Google Scholar 

  • Buurma B, Gu K, Rutherford RB (1999) Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds. Eur J Oral Sci 107:282–289

    Article  PubMed  CAS  Google Scholar 

  • Carlson MA, Longaker MT (2004) The fibroblast-populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repair Regen 12:134–147

    Article  PubMed  Google Scholar 

  • Chan CP, Lan WH, Chang MC, Chen YJ, Lan WC, Chang HH, Jeng JH (2005) Effects of TGF-betas on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 50:469–479

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Santos L, Wu Y, Vuong R, Gay I, Schulze J, Chuang HH, Macdougall M (2005) Altered gene expression in human cleidocranial dysplasia dental pulp cells. Arch Oral Biol 50:227–236

    Article  PubMed  CAS  Google Scholar 

  • Couble ML, Farges JC, Bleicher F, Perrat–Mabillon B, Boudeulle M, Magloire H (2000) Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 66:129–138

    Article  PubMed  CAS  Google Scholar 

  • Di Lenarda R, Cadenaro M, Sbaizero O (2000) Effectiveness of 1 mol L–1 citric acid and 15% EDTA irrigation on smear layer removal. Int Endod J 33:46–52

    Article  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  PubMed  CAS  Google Scholar 

  • D’Souza R (2002) Development of the pulpodentin complex. In: Hargreaves KM, Goodis HE (eds) Seltzer and Bender’s Dental pulp. Quintessence, Carol Stream, pp 13–41

    Google Scholar 

  • Froes JA, Horta HG, Silveira AB da (2000) Smear layer influence on the apical seal of four different obturation techniques. J Endod 26:351–354

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F (2000) Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 10:362–365

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    PubMed  CAS  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Haas VR, Santos AR, Jr, Wada ML (2001) Behaviour of fibroblastic cells cultured in collagen I using the sandwich technique. Cytobios 106 (Suppl 2):255–267

    PubMed  CAS  Google Scholar 

  • Hosoya S, Matsushima K, Ohbayashi E, Yamazaki M, Shibata Y, Abiko Y (1996) Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide. Biochem Mol Med 59:138–143

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Irwin CR, Locke M, Mackenzie IC (2003) Construction of large area organotypical cultures of oral mucosa and skin. J Oral Pathol Med 32:422–430

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Alsberg E, Mooney DJ (2001) Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J Biomed Mater Res 56:228–233

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 272:835–842

    Article  PubMed  CAS  Google Scholar 

  • Mooney DJ, Powell C, Piana J, Rutherford B (1996) Engineering dental pulp-like tissue in vitro. Biotechnol Prog 12:865–868

    Article  PubMed  CAS  Google Scholar 

  • Nakakura–Ohshima K, Watanabe J, Kenmotsu S, Ohshima H (2003) Possible role of immunocompetent cells and the expression of heat shock protein-25 in the process of pulpal regeneration after tooth injury in rat molars. J Electron Microsc (Tokyo) 52:581–591

    Article  CAS  Google Scholar 

  • Nakao K, Itoh M, Tomita Y, Tomooka Y, Tsuji T (2004) FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells. Biochem Biophys Res Commun 325:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M (1991) Establishment of primary cultures of pulp cells from bovine permanent incisors. Arch Oral Biol 36:655–663

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M, Iohara K, Ishikawa M, Ito M, Tomokiyo A, Tanaka T, Akamine A (2004) Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15:1045–1053

    PubMed  CAS  Google Scholar 

  • Ohshima H, Nakakura–Ohshima K, Takeuchi K, Hoshino M, Takano Y, Maeda T (2003) Pulpal regeneration after cavity preparation, with special reference to close spatio-relationships between odontoblasts and immunocompetent cells. Microsc Res Tech 60:483–490

    Article  PubMed  Google Scholar 

  • Okazaki M, Yoshimura K, Suzuki Y, Harii K (2003) Effects of subepithelial fibroblasts on epithelial differentiation in human skin and oral mucosa: heterotypically recombined organotypic culture model. Plast Reconstr Surg 112:784–792

    Article  PubMed  Google Scholar 

  • Okiji T (2002) Pulp as a connective tissue. In: Hargreaves KM, Goodis HE (eds) Seltzer and Bender’s Dental Pulp. Quintessence, Carol Stream, pp 95–123

    Google Scholar 

  • Onishi T, Kinoshita S, Shintani S, Sobue S, Ooshima T (1999) Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol 44:361–371

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Hsiao GY, Huang GT (2004) Role of substance P and calcitonin gene-related peptide in the regulation of interleukin-8 and monocyte chemotactic protein-1 expression in human dental pulp. Int Endod J 37:185–192

    Article  PubMed  CAS  Google Scholar 

  • Patel T, Park SH, Lin LM, Chiappelli F, Huang GT (2003) Substance P induces interleukin-8 secretion from human dental pulp cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:478–485

    PubMed  Google Scholar 

  • Priam F, Ronco V, Locker M, Bourd K, Bonnefoix M, Duchene T, Bitard J, Wurtz T, Kellermann O, Goldberg M, Poliard A (2005) New cellular models for tracking the odontoblast phenotype. Arch Oral Biol 50:271–277

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Ogawa M, Hata Y, Bessho K (2004) Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J Endod 30:205–208

    Article  PubMed  Google Scholar 

  • Schmalz G, Garhammer P, Schweiki H (1996) A commercially available cell culture device modified for dentin barrier tests. J Endod 22:249–252

    Article  PubMed  CAS  Google Scholar 

  • Schmalz G, Schuster U, Thonemann B, Barth M, Esterbauer S (2001) Dentin barrier test with transfected bovine pulp-derived cells. J Endod 27:96–102

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Smith AJ (2002) Dentin formation and repair. In: Hargreaves KM, Goodis HE (eds) Seltzer and Bender’’s Dental Pulp. Quintessence, Carol Stream, pp 41–63

    Google Scholar 

  • Tsukamoto Y, Fukutani S, Shin–Ike T, Kubota T, Sato S, Suzuki Y, Mori M (1992) Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Arch Oral Biol 37:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88:753–759

    Article  PubMed  CAS  Google Scholar 

  • Vacanti JP (2003) Tissue and organ engineering: can we build intestine and vital organs? J Gastrointest Surg 7:831–835

    Article  PubMed  Google Scholar 

  • Vernon RB, Sage EH (1996) Contraction of fibrillar type I collagen by endothelial cells: a study in vitro. J Cell Biochem 60:185–197

    Article  PubMed  CAS  Google Scholar 

  • Vidic B, Chen R, Taylor JJ (1972) Functional behavior and structural modification of pulpal fibroblasts cultured in vitro. Archs Arch Anat Histol Embryol 55:51–73

    Google Scholar 

  • Zhu YK, Umino T, Liu XD, Wang HJ, Romberger DJ, Spurzem JR, Rennard SI (2001) Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell Dev Biol Anim 37:10–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciated the technical assistance of Alicia Thompson (Center for Electron Microscopy and Microanalysis) with the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George T.-J. Huang.

Additional information

Most of this work was performed at UCLA School of Dentistry.

This study was supported in part by an Endodontic Research Grant from the American Association of Endodontists Foundation (G.T.-J.H.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G.TJ., Sonoyama, W., Chen, J. et al. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324, 225–236 (2006). https://doi.org/10.1007/s00441-005-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0117-9

Keywords

Navigation