Advertisement

Cell and Tissue Research

, Volume 324, Issue 2, pp 243–253 | Cite as

Effect of estradiol and dihydrotestosterone on hypergravity-induced MAPK signaling and occludin expression in human umbilical vein endothelial cells

  • Wasana K. Sumanasekera
  • Lei Zhao
  • Margarita Ivanova
  • Dwight D. Morgan
  • Edouard L. Noisin
  • Robert S. Keynton
  • Carolyn M. KlingeEmail author
Regular Article

Abstract

Female astronauts have been reported to have a higher incidence of post-flight orthostatic intolerance (POI) compared with that of their male counterparts. POI may result from increased permeability of the endothelial cell (EC) layer in the vasculature. The goal of this study has been to determine whether estradiol (E2) and dihydrotesterone (DHT) alter human umbilical vein ECs (HUVECs) responses to short term (10 min) hypergravity (1–3 g) mimicking the g force experienced by astronauts during liftoff. E2 and DHT rapidly (within 5 min) activated MAPK (mitogen-activated protein kinase) in HUVEC at 1 g in a receptor-dependent manner. Liftoff inhibited MAPK phosphorylation, and rapid E2 and DHT activation of MAPK was blocked. Liftoff simulation or brief (5–90 min) treatment with E2 or DHT at 1 g had no effect on the expression of the EC tight-junction protein occludin. However, 24-h pre-treatment of HUVECs with E2 and DHT prior to liftoff simulation significantly increased occludin expression, and hypergravity exposure did not alter this increase. These data provide evidence for a possible protective effect of E2 and DHT on EC function as indicated by increased occludin; this may help maintain the integrity of EC tight junction and could thus retard or reduce the incidence of POI.

Keywords

Mitogen-activated protein kinase Occludin Estradiol Dihydrotestosterone Tight junctions Post-sxpace-flight orthostatic intolerance Human Umbilical vein endothelial cells 

Notes

Acknowledgements

We thank Darren M. Brey for performing some of the initial experiments in this project. We thank AstraZeneca for providing bicalutamide (Casodex) for our study.

References

  1. Armen TA, Gay CV (2000) Simultaneous detection and functional response of testosterone and estradiol receptors in osteoblast plasma membranes. J Cell Biochem 79:620–627CrossRefPubMedGoogle Scholar
  2. Chambliss KL, Shaul PW (2002) Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev 23:665–686CrossRefPubMedGoogle Scholar
  3. Cho MM, Ziats NP, Abdul–Karim FW, Pal D, Goldfarb J, Utian WH, Gorodeski GI (1998) Effects of estrogen on tight junctional resistance in cultured human umbilical vein endothelial cells. J Soc Gynecol Invest 5:260–270CrossRefGoogle Scholar
  4. Chung NP, Cheng CY (2001) Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142:1878–1888CrossRefPubMedGoogle Scholar
  5. Convertino VA (1999) G-factor as a tool in basic research: mechanisms of orthostatic tolerance. J Gravit Physiol 6:P73–76PubMedGoogle Scholar
  6. Drummer C, Norsk P, Heer M (2001) Water and sodium balance in space. Am J Kidney Dis 38:684–690PubMedCrossRefGoogle Scholar
  7. Farshori P, Kachar B (1999) Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol 170:147–156CrossRefPubMedGoogle Scholar
  8. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788CrossRefPubMedGoogle Scholar
  9. Gebken J, Luders B, Notbohm H, Klein HH, Brinckmann J, Muller PK, Batge B (1999) Hypergravity stimulates collagen synthesis in human osteoblast-like cells: evidence for the involvement of p44/42 MAP-kinases (ERK 1/2). J Biochem (Tokyo) 126:676–682Google Scholar
  10. Gye MC, Ohsako S (2003) Effects of flutamide in the rat testis on the expression of occludin, an integral member of the tight junctions. Toxicol Lett 143:217–222CrossRefPubMedGoogle Scholar
  11. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613PubMedGoogle Scholar
  12. Hisamoto K, Ohmichi M, Kanda Y, Adachi K, Nishio Y, Hayakawa J, Mabuchi S, Takahashi K, Tasaka K, Miyamoto Y, Taniguchi N, Murata Y (2001a) Induction of endothelial nitric-oxide synthase phosphorylation by the raloxifene analog LY117018 is differentially mediated by Akt and extracellular signal-regulated protein kinase in vascular endothelial cells. J Biol Chem 276:47642–47649CrossRefPubMedGoogle Scholar
  13. Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, Nishio Y, Adachi K, Tasaka K, Miyoshi E, Fujiwara N, Taniguchi N, Murata Y (2001b) Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 276:3459–3467PubMedCrossRefGoogle Scholar
  14. Hussein–Fikret S, Fuller PJ (2005) Expression of nuclear receptor coregulators in ovarian stromal and epithelial tumours. Mol Cell Endocrinol 229:149–160CrossRefPubMedGoogle Scholar
  15. Kampa M, Nifli AP, Charalampopoulos I, Alexaki VI, Theodoropoulos PA, Stathopoulos EN, Gravanis A, Castanas E (2005) Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis. Exp Cell Res 307:41–51CrossRefPubMedGoogle Scholar
  16. Kevil CG, Okayama N, Trocha SD, Kalogeris TJ, Coe LL, Specian RD, Davis CP, Alexander JS (1998) Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation 5:197–210CrossRefPubMedGoogle Scholar
  17. Kevil CG, Oshima T, Alexander B, Coe LL, Alexander JS (2000) H2O2-mediated permeability: role of MAPK and occludin. Am J Physiol Cell Physiol 279:C21–C30PubMedGoogle Scholar
  18. Kirby JE (2004) Anthrax lethal toxin induces human endothelial cell apoptosis. Infect Immun 72:430–439CrossRefPubMedGoogle Scholar
  19. Klinge CM, Blankenship KA, Risinger KE, Bhatnagar S, Noisin EL, Sumanasekera WK, Zhao L, Brey DM, Keynton RS (2005) Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem 280:7460–7468CrossRefPubMedGoogle Scholar
  20. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730PubMedGoogle Scholar
  21. Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners LD, Smith SM, Lane HW, Krauhs JM (1996) Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 81:105–116PubMedGoogle Scholar
  22. Levin ER (2002) Cellular functions of plasma membrane estrogen receptors. Steroids 67:471–475CrossRefPubMedGoogle Scholar
  23. Lutz LB, Jamnongjit M, Yang WH, Jahani D, Gill A, Hammes SR (2003) Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands. Mol Endocrinol 17:1106–1116CrossRefPubMedGoogle Scholar
  24. Midwinter RG, Vissers MC, Winterbourn CC (2001) Hypochlorous acid stimulation of the mitogen-activated protein kinase pathway enhances cell survival. Arch Biochem Biophys 394:13–20CrossRefPubMedGoogle Scholar
  25. Miyamoto H, Yeh S, Wilding G, Chang C (1998) Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci USA 95:7379–7384CrossRefPubMedGoogle Scholar
  26. Muller M, Schouw YT van der, Thijssen JH, Grobbee DE (2003) Endogenous sex hormones and cardiovascular disease in men. J Clin Endocrinol Metab 88:5076–5086CrossRefPubMedGoogle Scholar
  27. Muller M, Beld AW van den, Bots ML, Grobbee DE, Lamberts SW, Schouw YT van der (2004) Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation 109:2074–2079CrossRefPubMedGoogle Scholar
  28. Ojanotko–Harri A, Forssell H, Laine M, Hurttia H, Blauer M, Tuohimaa P (1992) Immunohistochemical detection of androgen receptors in human oral mucosa. Arch Oral Biol 37:511–514CrossRefPubMedGoogle Scholar
  29. Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16:100–115CrossRefPubMedGoogle Scholar
  30. Razandi M, Pedram A, Park ST, Levin ER (2003) Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem 278:2701–2712CrossRefPubMedGoogle Scholar
  31. Razandi M, Pedram A, Merchenthaler I, Greene GL, Levin ER (2004) Plasma membrane estrogen receptors exist and functions as dimers. Mol Endocrinol 18:2854–2865CrossRefPubMedGoogle Scholar
  32. Rubio–Gayosso I, Garcia–Ramirez O, Gutierrez–Serdan R, Guevara–Balcazar G, Munoz–Garcia O, Morato–Cartajena T, Zamora–Garza M, Ceballos–Reyes G (2002) Testosterone inhibits bradykinin-induced intracellular calcium kinetics in rat aortic endothelial cells in culture. Steroids 67:393–397CrossRefPubMedGoogle Scholar
  33. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401CrossRefPubMedGoogle Scholar
  34. Schnittler HJ (1998) Structural and functional aspects of intercellular junctions in vascular endothelium. Basic Res Cardiol 93 Suppl 3:30–39CrossRefPubMedGoogle Scholar
  35. Sierra–Ramirez A, Morato T, Campos R, Rubio I, Calzada C, Mendez E, Ceballos G (2004) Acute effects of testosterone on intracellular Ca2+ kinetics in rat coronary endothelial cells are exerted via aromatization to estrogens. Am J Physiol Heart Circ Physiol 287:H63–H71CrossRefPubMedGoogle Scholar
  36. Somjen D, Kohen F, Gayer B, Kulik T, Knoll E, Stern N (2004) Role of putative membrane receptors in the effect of androgens on human vascular cell growth. J Endocrinol 180:97–106CrossRefPubMedGoogle Scholar
  37. Spisni E, Bianco MC, Griffoni C, Toni M, D’Angelo R, Santi S, Riccio M, Tomasi V (2003) Mechanosensing role of caveolae and caveolar constituents in human endothelial cells. J Cell Physiol 197:198–204CrossRefPubMedGoogle Scholar
  38. Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M (2004) Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64:7156–7168CrossRefPubMedGoogle Scholar
  39. Wang Y, Zhang J, Yi XJ, Yu FS (2004) Activation of ERK1/2 MAP kinase pathway induces tight junction disruption in human corneal epithelial cells. Exp Eye Res 78:125–136CrossRefPubMedGoogle Scholar
  40. Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 92:586–594PubMedGoogle Scholar
  41. Ye L, Martin TA, Parr C, Harrison GM, Mansel RE, Jiang WG (2003) Biphasic effects of 17-beta-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells. J Cell Physiol 196:362–369CrossRefPubMedGoogle Scholar
  42. Zeng R, Li X, Gorodeski GI (2004) Estrogen abrogates transcervical tight junctional resistance by acceleration of occludin modulation. J Clin Endocrinol Metab 89:5145–5155CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Wasana K. Sumanasekera
    • 1
  • Lei Zhao
    • 1
  • Margarita Ivanova
    • 1
  • Dwight D. Morgan
    • 3
  • Edouard L. Noisin
    • 1
  • Robert S. Keynton
    • 2
    • 3
  • Carolyn M. Klinge
    • 1
    Email author
  1. 1.Department of Biochemistry & Molecular Biology and the Center for Genetics and Molecular Medicine, School of MedicineUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Bioengineering, Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Mechanical Engineering, Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations