Advertisement

Cell and Tissue Research

, Volume 324, Issue 1, pp 55–67 | Cite as

The complexus adhaerens of mammalian lymphatic endothelia revisited: a junction even more complex than hitherto thought

  • Bettina Hämmerling
  • Christine Grund
  • Judit Boda-Heggemann
  • Roland Moll
  • Werner W. FrankeEmail author
Regular Article

Abstract

The significance of a special kind of VE-cadherin-based, desmoplakin- and plakoglobin-containing adhering junction, originally identified in certain endothelial cells of the mammalian lymphatic system (notably the retothelial cells of the lymph node sinus and a subtype of lining endothelial cells of peripheral lymphatic vessels), has been widely confirmed and its importance in the formation of blood and lymph vessels has been demonstrated in vivo and in vitro. We have recently extended the molecular and structural characterization of the complexus adhaerens and can now report that it represents a rare and special combination of components known from three other major types of cell junction. It comprises zonula adhaerens proteins (VE-cadherin, α- and β-catenin, protein p120ctn, and afadin), desmosomal plaque components (desmoplakin and plakoglobin), and tight-junction proteins (claudin-5 and ZO-1) and forms junctions that vary markedly in size and shape. The special character and the possible biological roles of the complexus adhaerens and its unique ensemble of molecules in angiogenesis, immunology, and oncology are discussed. The surprising finding of claudin-5 and protein ZO-1 in substructures of retothelial cell-cell bridges, i.e. structures that do not separate different tissues or cell layer compartments, suggests that such tight-junction molecules are involved in functions other than the “fence” and “barrier” roles of zonulae occludentes.

Keywords

Complexus adhaerens Junctions Lymph node Retothelium Lymphatic endothelium Bovine Rodent Human 

Notes

Acknowledgements

We thank Jutta Osterholt for expert photographic data processing, Eva Gundel for careful typing of the manuscript, and Cäcilia Kuhn for skillful technical help.

References

  1. Alexander JS, Jackson SA, Chaney E, Kevil CG, Haselton FR (1998) The role of cadherin endocytosis in endothelial barrier regulation: involvement of protein kinase C and actin-cadherin interactions. Inflammation 22:419–433PubMedGoogle Scholar
  2. Allport JR, Ding H, Collins T, Gerritsen ME, Luscinskas FW (1997) Endothelial-dependent mechanisms regulate leukocyte transmigration: a process involving the proteasome and disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J Exp Med 186:517–527PubMedGoogle Scholar
  3. Al-Rawi MAA, Mansel RE, Jiang WG (2005) Lymphangiogenesis and its role in cancer. Histol Histopathol 20:283–298PubMedGoogle Scholar
  4. Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J, Introna M, Gulino D, Lampugnani MG, Dejana E (1995) Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15:1229–1239PubMedGoogle Scholar
  5. Burns AR, Bowden RA, MacDonell SD, Walker DC, Odebunmi TO, Donnachie EM, Simon SI, Entman ML, Smith CW (2000) Analysis of tight junctions during neutrophil transendothelial migration. J Cell Sci 113:45–57PubMedGoogle Scholar
  6. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, Ruiter MC de, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157PubMedGoogle Scholar
  7. Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, Bianco P, Wolburg H, Moore R, Oreda B, Kemler R, Dejana E (2003) The conditional inactivation of the β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162:1111–1122PubMedGoogle Scholar
  8. Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Giulino D, Lampugnani MG, Dejana E (1996) Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 98:886–893PubMedGoogle Scholar
  9. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820PubMedGoogle Scholar
  10. Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller WA, Hicklin DJ, Bohlen P, Dejana E (1999) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability.Blood 97:1679–1684Google Scholar
  11. Cowin P, Kapprell H-P, Franke WW (1985) The complement of desmosomal plaque proteins in different cell types. J Cell Biol 101:1442–1454PubMedGoogle Scholar
  12. Cowin P, Kapprell H-P, Franke WW, Tamkun J, Hynes RO (1986) Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46:1063–1073PubMedGoogle Scholar
  13. Dejana E (1996) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 98:1949–1953PubMedCrossRefGoogle Scholar
  14. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270PubMedGoogle Scholar
  15. Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, Dejana E (1996) Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 135:497–510PubMedGoogle Scholar
  16. Ebata N, Sawa Y, Nodasaka Y, Yamaoka Y, Yoshida S, Totsuka Y (2001a) Desmoplakin as a specific marker of lymphatic vessels. Microvasc Res 61:40–48PubMedGoogle Scholar
  17. Ebata N, Sawa Y, Nodasaka Y, Yamaoka Y, Yoshida S, Totsuka Y (2001b) Immunoelectron microscopic study of PECAM-1 expression on lymphatic endothelium of the human tongue. Tissue Cell 33:211–218PubMedGoogle Scholar
  18. Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, Meyer zu Brickwedde M-K, Suzuki A, Imhof BA, Vestweber D (2003) The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 116:3879–3891PubMedGoogle Scholar
  19. Fedele C, Berens D, Rautenfeld V, Pabst R (2004) Desmoplakin and plakoglobin-specific markers of lymphatic vessels in the skin? Anat Histol Embryol 33:168–171PubMedGoogle Scholar
  20. Ferber A, Yaen C, Sarmiento E, Martinez J (2002) An octapeptide in the juxtamembrane domain of VE-cadherin is important for p120ctn binding and cell proliferation. Exp Cell Res 274:35–44PubMedGoogle Scholar
  21. Franke WW, Kapprell H-P, Cowin P (1987) Immunolocalization of plakoglobin in endothelial junctions: identification as a special type of zonulae adhaerentes. Biol Cell 59:205–218PubMedGoogle Scholar
  22. Franke WW, Cowin P, Grund C, Kuhn C, Kapprell H-P (1988) The endothelial junction. The plaque and its components. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum, New York, pp 147–166Google Scholar
  23. Fujita T, Miyoshi M, Murakami T (1973) Scanning electron microscope observation of the dog mesenteric lymph node. Z Zellforsch Mikrosk Anat 133:147–162Google Scholar
  24. Gallicano GI, Bauer C, Fuchs E (2001) Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128:929–941PubMedGoogle Scholar
  25. Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 11:1191–1201PubMedGoogle Scholar
  26. González-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Progr Biophys Mol Biol 81:1–44Google Scholar
  27. Gory-Fauré S, Prandini MH, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M, Huber P (1999) Role of vascular endothelial cadherin in vascular morphogenesis. Development 126:2093–2102PubMedGoogle Scholar
  28. Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck M-P (2004) Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315:157–166PubMedGoogle Scholar
  29. Hämmerling B (2004) Molekulare Charakterisierung der verschiedenen Zell-Zell-Verbindungsstrukturen (“Junctions”) in Lymphknoten höherer Säugetiere [Molecular characterization of the diverse cell-cell junctions in lymph nodes of higher mammals]. MD Thesis. Faculty of Medicine, University of Heidelberg, GermanyGoogle Scholar
  30. Haselton FR, Heimark RL (1997) Role of cadherins 5 and 13 in the aortic endothelial barrier. J Cell Physiol 171:243–251PubMedGoogle Scholar
  31. Heid HW, Schmidt A, Zimbelmann R, Schäfer S, Winter-Simanowski S, Stumpp S, Keith M, Figge U, Schnölzer M, Franke WW (1994) Cell type-specific desmosomal plaque proteins of the plakoglobin family: plakophilin 1 (band 6 protein). Differentiation 58:113–131PubMedGoogle Scholar
  32. Heusermann U, Stutte HJ (1974) Intercellular junctions of sinus lining cells in the human spleen. Cell Tissue Res 151:337–342PubMedGoogle Scholar
  33. Hordijk PL, Anthony E, Mul FPJ, Rientsma R, Oomen LCJM, Roos D (1999) Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci 112:1915–1923PubMedGoogle Scholar
  34. Iyer S, Ferreri DM, DeCocco NC, Minnear FL, Vincent PA (2004) VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 286:L1143–L1153PubMedGoogle Scholar
  35. Jaggi M, Wheelock MJ, Johnson KR (2002) Differential displacement of classical cadherins by VE-cadherin. Cell Commun Adhes 9:103–115PubMedGoogle Scholar
  36. Ji RC (2005) Characteristics of lymphatic endothelial cells in physiological and pathological conditions. Histol Histopathol 20:155–175PubMedGoogle Scholar
  37. Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700PubMedGoogle Scholar
  38. Kaiserling E, Wolburg H, Banks P (1989) Freeze-fracture investigation of the red pulp of human spleen. Virchows Arch B Cell Pathol 58:15–25Google Scholar
  39. Kevil CG, Payne DK, Mire E, Alexander JS (1998) Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 273:15099–15103PubMedGoogle Scholar
  40. Kowalczyk AP, Navarro P, Dejana E, Bornslaeger EA, Green KJ, Kopp DS, Borgwardt JE (1998) VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions. J Cell Sci 111:3045–3057PubMedGoogle Scholar
  41. Kurzen H, Moll I, Moll R, Schϋfer S, Simics E, Amagai M, Wheelock MJ, Franke WW (1988) Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation 63:295–304Google Scholar
  42. Lampugnani MG, Dejana E (1997) Interendothelial junctions: structure, signalling and functional roles. Curr Opin Cell Biol 9:674–682PubMedGoogle Scholar
  43. Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522PubMedGoogle Scholar
  44. Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions, differential association of plakoglobin, β-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–217PubMedGoogle Scholar
  45. Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW (2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 81:419–435PubMedGoogle Scholar
  46. Langbein L, Pape U-F, Grund C, Kuhn C, Praetzel S, Moll I, Moll R, Franke WW (2003) Tight junction-related structures in the absence of a lumen: occludin, claudins and tight junction plaque proteins in densely packed cell formations of stratified epithelia and squamous cell carcinomas. Eur J Cell Biol 82:385–400PubMedGoogle Scholar
  47. Li C, Poznansky MJ (1997) Characterization of the ZO-1 protein in endothelial and other cell lines. J Cell Sci 97:231–237Google Scholar
  48. Liebner C, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H, Wolburg H (2000a) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastome multiforme. Acta Neuropathol 100:323–331PubMedGoogle Scholar
  49. Liebner S, Gerhardt H, Wolburg H (2000b) Differential expression of endothelial β-catenin and plakoglobin during development and maturation of the blood-brain and blood-retina barrier in the chicken. Dev Dyn 217:86–98PubMedGoogle Scholar
  50. Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000c) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 79:707–717PubMedGoogle Scholar
  51. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113:2363–2374PubMedGoogle Scholar
  52. Luo Y, Radice GL (2005) N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol 169:29–34PubMedGoogle Scholar
  53. Martin TA, Jiang WG (2001) Tight junctions and their role in cancer metastasis. Histol Histopathol 16:1183–1195PubMedGoogle Scholar
  54. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127PubMedGoogle Scholar
  55. Mertens C, Kuhn C, Franke WW (1996) Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 135:1009–1025PubMedGoogle Scholar
  56. Mertens C, Kuhn C, Moll R, Schwetlick I, Franke WW (1999) Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64:277–290PubMedGoogle Scholar
  57. Mertens C, Hofmann I, Wang Z, Teichmann M, Sepehri Chong S, Schnölzer M, Franke WW (2001) Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc Natl Acad Sci USA 98:7795–7800PubMedGoogle Scholar
  58. Morcos Y, Hosie MJ, Bauer HC, Chan-Ling T (2001) Immunolocalization of occludin and claudin-1 to tight junctions in intact CNS vessels of mammalian retina. J Neurocytol 30:107–123PubMedGoogle Scholar
  59. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 145:185–194Google Scholar
  60. Morita K, Sasaki H, Furuse K, Furuse M, Tsukita S, Miyachi Y (2003) Expression of claudin-5 in dermal vascular endothelia. Exp Dermatol 12:289–295PubMedGoogle Scholar
  61. Navarro P, Caveda L, Breviario F, Mândoteanu I, Lampugnani M-G, Dejana E (1995) Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 270:30965–30972PubMedGoogle Scholar
  62. Navarro P, Ruco L, Dejana E (1998) Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140:1475–1484PubMedGoogle Scholar
  63. Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L (2003) Severe alterations of endothelial and glial cells in the blood-brain barrier of dystropic mdx mice. Glia 42:235–251PubMedGoogle Scholar
  64. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660PubMedGoogle Scholar
  65. Nuber UA, Schäfer S, Stehr S, Rackwitz H-R, Franke WW (1996) Patterns of desmocollin synthesis in human epithelia: immunolocalization of desmocollins 1 and 3 in special epithelia and in cultured cells. Eur J Cell Biol 71:1–13PubMedGoogle Scholar
  66. Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–783PubMedGoogle Scholar
  67. Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW (1999) The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 250:452–464PubMedGoogle Scholar
  68. Peitsch WK, Grund C, Kuhn C, Schnölzer M, Spring H, Schmelz M, Franke WW (1999) Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells. Eur J Cell Biol 78:767–778PubMedGoogle Scholar
  69. Peitsch WK, Hofmann I, Prätzel S, Grund C, Kuhn C, Moll I, Langbein L, Franke WW (2001) Drebrin particles: components in the ensemble of proteins regulating actin dynamics of lamellipodia and filopodia. Eur J Cell Biol 80:567–579PubMedGoogle Scholar
  70. Peitsch WK, Hofmann I, Bulkescher J, Hergt M, Spring H, Bleyl U, Goerdt S, Franke WW (2005) Drebrin, an actin-binding, cell type characteristic protein: induction and localization in epithelial skin tumors and cultured keratinocytes. J Invest Dermatol 125:761–774PubMedGoogle Scholar
  71. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Jackson DG, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99:16069–16074PubMedGoogle Scholar
  72. Rampon C, Prandini M-H, Bouillot S, Pointu H, Tillet E, Franke R, Vernet M, Huber P (2005) Protocadherin 12 (VE-cadherin 2) is expressed in endothelial, trophoblast, and mesangial cells. Exp Cell Res 302:48–60PubMedGoogle Scholar
  73. Ratcliffe MJ, Smales C, Staddon JM (1999) Dephosphorylation of the catenins p120 and p100 in endothelial cells in response to inflammatory stimuli. Biochem J 338:471–478PubMedGoogle Scholar
  74. Raviola E (1975) Lymph nodes. In: Bloom W, Fawcett DW (eds) A textbook of histology, 10th edn. Saunders, Philadelphia, pp 471–486Google Scholar
  75. Riedel I, Liang F-X, Deng F-M, Tu L, Kreibich G, Wu X-R, Sun T-T, Hergt M, Moll R (2005) Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder. Eur J Cell Biol 84:393–405PubMedGoogle Scholar
  76. Salomon D, Ayalon O, Patel-King R, Hynes RO, Geiger B (1992) Extrajunctional distribution of N-cadherin in cultured human endothelial cells. J Cell Sci 102:7–17PubMedGoogle Scholar
  77. Sawa Y, Shibata K-I, Braithwaite MW, Suzuki M, Yoshida S (1999) Expression of immunoglobulin superfamily members on the lymphatic endothelium of inflamed human small intestine. Microvasc Res 57:100–106PubMedGoogle Scholar
  78. Schmelz M, Moll R, Franke WW (1990) A new type of intercellular junction: desmosomal proteins in the extended junctions of certain endothelial cells of the lymphatic system. Cell Biol Int Rep 14:54Google Scholar
  79. Schmelz M, Franke WW (1993) Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymph nodes. Eur J Cell Biol 61:274–289PubMedGoogle Scholar
  80. Schmelz M, Moll R, Kuhn C, Franke WW (1994) Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells. II. Different types of lymphatic vessels. Differentiation 57:97–117PubMedGoogle Scholar
  81. Schmidt A, Langbein L, Prätzel S, Rode M, Rackwitz H-R, Franke WW (1999) Plakophilin-3-a novel cell-type specific desmosomal plaque protein. Differentiation 64:291–306PubMedGoogle Scholar
  82. Schulze C, Firth JA (1993) Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J Cell Sci 104:773–782PubMedGoogle Scholar
  83. Shi S-R, Gu J, Taylor CR (2000) Antigen retrieval techniques: immunohistochemistry and molecular morphology. Eaton, NatickGoogle Scholar
  84. Simionescu N, Simionescu M (1988) Endothelial cell biology in health and disease. Plenum, New YorkGoogle Scholar
  85. Sleeman JP, Krishnan J, Kirkin V, Baumann P (2001) Markers for the lymphatic endothelium: in search of the Holy Grail? Microsc Res Tech 55:61–69PubMedGoogle Scholar
  86. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583PubMedGoogle Scholar
  87. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766PubMedGoogle Scholar
  88. Straub BK, Boda J, Kuhn C, Schnoelzer M, Korf U, Kempf T, Spring H, Hatzfeld M, Franke WW (2003) A novel cell-cell junction system: the cortex adhaerens mosaic of lens fiber cells. J Cell Sci 116:4985–4995PubMedGoogle Scholar
  89. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116:17–27PubMedGoogle Scholar
  90. Telo’ P, Breviario F, Hubert P, Panzeri C, Dejana E (1998) Identification of a novel cadherin (vascular endothelial cadherin-2) located at intercellular junctions in endothelial cells. J Biol Chem 273:17565–17572PubMedGoogle Scholar
  91. Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633PubMedGoogle Scholar
  92. Uehara K, Miyoshi M (1997) Junctions between the sinus endothelial cells of rat spleen. Cell Tissue Res 287:187–192PubMedGoogle Scholar
  93. Valiron O, Chevrier V, Usson Y, Breviario F, Job D, Dejana E (1996) Desmoplakin expression and organization at human umbilical vein endothelial cell-to-cell junctions. J Cell Sci 109:2141–2149PubMedGoogle Scholar
  94. Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P (1997) Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci USA 94:6273–6278PubMedGoogle Scholar
  95. Vorbrodt AW, Dobrogowska DH (2004) Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels. Folia Histochem Cytobiol 42:67–75PubMedGoogle Scholar
  96. Wacker H-H (1994) Sinuswandzellen: Immunakzessorische Zellen des Lymphknotensinus [Sinus lining cells: immune accessory cells of lymph node sinuses]. Veröffentl Pathol 143:1–217Google Scholar
  97. Wacker H-H, Heidebrecht HJ, Radzun HJ, Parwaresch MR (1992) Sinuswandzellen: Morphologie, Funktion und Neoplasie [Sinus lining cells: morphology, function, and neoplasia]. Verh Dtsch Ges Pathol 76:219–225PubMedGoogle Scholar
  98. Weiss L (1977) Lymphatic vessels and lymph nodes. In: Weiss L, Greep RO (eds) Histology. McGraw-Hill, New York, pp 523–544Google Scholar
  99. Wessells H, King SH, Schmelz M, Nagle RB, Heimark RL (2004) Immunohistochemical comparison of vascular and sinusoidal adherens junctions in cavernosal endothelium. Urology 63:201–206PubMedGoogle Scholar
  100. Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 38:323–337Google Scholar
  101. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMedGoogle Scholar
  102. Wong EYM, Morgan L, Smales C, Lang P, Gubby SE, Staddon JM (2000) Vascular endothelial growth factor stimulates dephosphorylation of the catenins p120 and p100 in endothelial cells. Biochem J 346:209–216PubMedGoogle Scholar
  103. Zhou X, Stuart A, Dettin LE, Rodriguez G, Hoel B, Gallicano GI (2004) Desmoplakin is required for microvascular tube formation in culture. J Cell Sci 117:3129–3140PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Bettina Hämmerling
    • 1
  • Christine Grund
    • 1
  • Judit Boda-Heggemann
    • 1
  • Roland Moll
    • 2
  • Werner W. Franke
    • 1
    Email author
  1. 1.Division of Cell BiologyGerman Cancer Research CenterHeidelbergGermany
  2. 2.Institute of PathologyPhilip University of MarburgMarburgGermany

Personalised recommendations