Advertisement

Cell and Tissue Research

, Volume 323, Issue 2, pp 333–341 | Cite as

Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes

  • J. RotllantEmail author
  • P. M. Guerreiro
  • B. Redruello
  • H. Fernandes
  • L. Apolónia
  • L. Anjos
  • A. V. M. Canario
  • D. M. Power
Regular Article

Abstract

Whole animal studies have indicated that Ca2+ uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using amino-terminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of 125I-(1–35tyr) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (K D=2.59 nM; B max=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1–34)PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The amino-terminal peptides (2–34)PTHrP, (3–34)PTHrP and (7–34)PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1–34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca2+ uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.

Keywords

Parathyroid hormone-related peptide (PTHrP) PTHrP receptors (PTH1R, PTH3R) Enterocyte Sea bream Spartus auratus (Teleostei) 

References

  1. Abou-Samra AB, Uneno S, Jueppner H, Keutmann H, Potts JT Jr, Segre GV, Nussbaum SR (1989) Non-homologous sequences of parathyroid hormone and the parathyroid hormone related peptide bind to a common receptor on ROS 17/2.8 cells. Endocrinology 125: 2215–2217PubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Caulfield MP, McKee RL, Goldman ME, Duong LT, Fisher JE, Gay CT, DeHaven PA, Levy JJ, Roubini E, Nutt RF (1990) The bovine renal parathyroid hormone (PTH) receptor has equal affinity for two different amino acid sequences: the receptor binding domains of PTH and PTH-related protein are located within the 14–34 region. Endocrinology 127:83–87PubMedCrossRefGoogle Scholar
  4. Del Castillo JR (1987) The use of hyperosmolar, intracellular-like solutions for the isolation of epithelial cells from guinea-pig small intestine. Biochim Biophys Acta 901:201–208PubMedCrossRefGoogle Scholar
  5. Dópido R, Rodríguez C, Goméz T, Acosta NG, Díaz M (2004) Isolation and characterization of enterocytes along the intestinal tract of the gilthead seabream (Sparus aurata L.). Comp Biochem Physiol A 139:21–31CrossRefGoogle Scholar
  6. Flanagan JA, Power DM, Bendell LA, Guerreiro PM, Fuentes J, Clark MS, Canario AV, Danks JA, Brown BL, Ingleton PM (2000) Cloning of the cDNA for sea bream (Sparus aurata) parathyroid hormone-related protein. Gen Comp Endocrinol 118:373–382PubMedCrossRefGoogle Scholar
  7. Fujimori A, Cheng SL, Avioli LV, Civitelli R (1992) Structure-function relationship of parathyroid hormone: activation of phospholipase-C, protein kinase-A and -C in osteosarcoma cells. Endocrinology 130:29–36PubMedCrossRefGoogle Scholar
  8. Gardella TJ, Juppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 12:210–217PubMedCrossRefGoogle Scholar
  9. Gardella TJ, Wilson AK, Keutmann HT, Oberstein R, Potts JT Jr, Kronenberg M, Nussbaum SR (1993) Analysis of parathyroid hormone's principal receptor-binding region by site-directed mutagenesis and analog design. Endocrinology 132:2024–2030PubMedCrossRefGoogle Scholar
  10. Gentili C, Morelli S, de Boland AR (2003) Characterization of PTH/PTHrP receptor in rat duodenum: effects of ageing. J Cell Biochem 88:1157–1167PubMedCrossRefGoogle Scholar
  11. Guerreiro PM, Fuentes J, Power DM, Ingleton PM, Flik G, Canario AV (2001) Parathyroid hormone-related protein: a calcium regulatory factor in sea bream (Sparus aurata L.) larvae. Am J Physiol 281:R855–R860Google Scholar
  12. Guerreiro PM, Fuentes J, Canario AV, Power DM (2002) Calcium balance in sea bream (Sparus aurata): the effect of oestradiol-17b. J Endocrinol 173:377–385PubMedCrossRefGoogle Scholar
  13. Ieda T, Takahashi T, Saito N, Yasuoka T, Kawashima M, Shimada K (2000) Changes in parathyroid hormone-related peptide receptor binding in the shell gland of laying hens (Gallus domesticus) during the oviposition cycle. Gen Comp Endocrinol 117:182–188PubMedCrossRefGoogle Scholar
  14. Jans DA, Thomas RJ, Gillespie MT (2003) Parathyroid hormone-related protein (PTHrP): a nucleocytoplasmic shuttling protein with distinct paracrine and intracrine roles. Vitam Horm 66:345–384PubMedCrossRefGoogle Scholar
  15. Juppner H, Abou-Samra A, Freeman M, Kong X, Schipani E, Richards J, Kolakowski L, Hock J, Potts J, Kronenberg H (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-relatyed peptide. Science 254:1024–1026PubMedCrossRefGoogle Scholar
  16. Klein C, Abbas SK, Stewart AF, Care A, Harmeyer J (2001) PTHrP (38–94NH2) probably stimulates active absorption of Ca2+ from the duodenum of piglets. 1st Joint Meeting: International Bone and Mineral Society and European Calcified Tissue Society, Comparative Endocrinology of Calcium Regulation, Madrid, p 13Google Scholar
  17. Li H, Seitz PK, Thomas ML, Selvanayagam P, Rajaraman S, Cooper CW (1995) Widespread expression of the parathyroid hormone-related peptide and PTH/PTHrP receptor genes in intestinal epithelial cells. Lab Invest 73:864–870PubMedGoogle Scholar
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  19. Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704PubMedCrossRefGoogle Scholar
  20. Nicholas KB, Nicholas HB Jr, Deerfield DWI (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4:14Google Scholar
  21. Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59:169–187PubMedCrossRefGoogle Scholar
  22. Orloff JJ, Wu TL, Stewart AF (1989) Parathyroid hormone-like proteins: biochemical responses and receptor interactions. Endocr Rev 10:476–495PubMedGoogle Scholar
  23. Orloff JJ, Reddy D, de Papp AE, Yang KH, Soifer NE, Stewart AF (1994) Parathyroid hormone-related protein as a prohormone: post-translational processing and receptor interactions. Endocr Rev 15:40–60PubMedCrossRefGoogle Scholar
  24. Papp A, Stewart A (1993) Parathyroid hormone-related protein, a peptide of diverse physiologic functions. TEM 4:181–187PubMedGoogle Scholar
  25. Potts JT Jr, Gardella TJ, Juppner H, Kronenberg H (1997) The history of parathyroid hormone and its receptor: structure-based design of parathyroid hormone analogues. Osteoporos Int 7(Suppl 3):S169–S173PubMedGoogle Scholar
  26. Power DM, Ingleton PM, Flanagan J, Canario AV, Danks J, Elgar G, Clark MS (2000) Genomic structure and expression of parathyroid hormone-related protein gene (PTHrP) in a teleost, Fugu rubripes. Gene 250:67–76PubMedCrossRefGoogle Scholar
  27. Ramirez JL, Castano JP, Torronteras R, Martinez-Fuentes AJ, Frawley LS, Garcia-Navarro S, Gracia-Navarro F (1999) Growth hormone (GH)-releasing factor differentially activates cyclic adenosine 3',5'-monophosphate- and inositol phosphate-dependent pathways to stimulate GH release in two porcine somatotrope subpopulations. Endocrinology 140:1752–1759PubMedCrossRefGoogle Scholar
  28. Rotllant J, Worthington GP, Fuentes J, Guerreiro PM, Teitsma CA, Ingleton PM, Balment RJ, Canario AVM, Power DM (2003) Determination of tissue and plasma concentrations of PTHrP in fish: development and validation of a radioimmunoassay using a teleost 1–34 N-terminal peptide. Gen Comp Endocrinol 133:146–153PubMedCrossRefGoogle Scholar
  29. Rotllant J, Guerreiro PM, Anjos L, Redruello B, Canario AVM, Power DM (2005) Stimulation of cortisol release by the N-terminus of teleost parathyroid hormone-related protein in interrenal cells in vitro. Endocrinology 146:71–76PubMedCrossRefGoogle Scholar
  30. Rubin DA, Juppner H (1999) Zebrafish express the common parathyroid hormone/parathyroid hormone-related peptide receptor (PTH1R) and a novel receptor (PTH3R) that is preferentially activated by mammalian and fugufish parathyroid hormone-related peptide. J Biol Chem 274:28185–28190PubMedCrossRefGoogle Scholar
  31. Rubin DA, Hellman P, Zon LI, Lobb CJ, Bergwitz C, Juppner H (1999) A G protein-coupled receptor from zebrafish is activated by human parathyroid hormone and not by human or teleost parathyroid hormone-related peptide—implications for the evolutionary conservation of calcium-regulating peptide hormones. J Biol Chem 274:23035–23042PubMedCrossRefGoogle Scholar
  32. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672CrossRefGoogle Scholar
  33. Silverberg SJ, Shane E, Dempster DW, Bilezikian JP (1999) The effects of vitamin D insufficiency in patients with primary hyperparathyroidism. Am J Med 107:561–567PubMedCrossRefGoogle Scholar
  34. Watson PH, Fraher LJ, Hendy GN, Chung UI, Kisiel M, Natale BV, Hodsman AB (2000) Nuclear localization of the type 1 PTH/PTHrP receptor in rat tissues. J Bone Miner Res 15:1033–1044PubMedCrossRefGoogle Scholar
  35. Wysolmerski J, Stewart A (1998) The physiology of parathyroid hormone-related protein: an emerging role as a development factor. Annu Rev Physiol 60:431–460PubMedCrossRefGoogle Scholar
  36. Yasuoka T, Kawashima M, Takahashi T, Iwata A, Oka N, Tanaka K (1996) Changes in parathyroid hormone receptor binding affinity during egg laying—implications for calcium homeostasis in chicken. J Bone Miner Res 11:1913–1920PubMedCrossRefGoogle Scholar
  37. Zhou LX, Nemere I, Norman AW (1992) A parathyroid-related peptide induces transcaltachia (the rapid, hormonal stimulation of intestinal Ca2+ transport). Biochem Biophys Res Commun 186:69–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Rotllant
    • 1
    • 2
    Email author
  • P. M. Guerreiro
    • 1
  • B. Redruello
    • 1
  • H. Fernandes
    • 1
  • L. Apolónia
    • 1
  • L. Anjos
    • 1
  • A. V. M. Canario
    • 1
  • D. M. Power
    • 1
  1. 1.Centre of Marine Sciences, CIMAR-Laboratório AssociadoUniversity of AlgarveFaroPortugal
  2. 2.COMB, Center of Marine BiotechnologyUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations