Cell and Tissue Research

, Volume 324, Issue 3, pp 535–546 | Cite as

Evidence for the presence of thyroid stimulating hormone, thyroglobulin and their receptors in Eisenia fetida: a multilevel hormonal interface between the nervous system and the peripheral tissues

  • Márta Wilhelm
  • Anna Koza
  • Péter Engelmann
  • Péter Németh
  • Mária Csoknya
Regular Article

Abstract

The present study describes the localization and distribution of thyroid-stimulating hormone (TSH), thyroglobulin (TGB) and their receptors in Eisenia fetida (Annelida, Oligochaeta) as revealed by immunohistological methods. Immunopositive neuronal and non-neuronal cells are present in both the central nervous system and some peripheral organs (e.g. foregut and coelomocytes). TSH- and TGB-immunopositive neurons in the various ganglia of the central nervous system are differentailly distributed. Most of the immunoreactive cells are found in the suboesophageal ganglion. The stained cells also differ in their shapes (round, oval, pear-shaped) and sizes (small, 12–25 μm; medium, 20–35 μm; large, 30–50 μm). In all ganglia of the central nervous system, TSH-positive neurons additionally show gamma aminobutyric acid (GABA) immunopositivity. Non-neuronal cells also take part in hormone secretion and transport. Elongated TSH-positive cells have been detected in the capsule of the central ganglia and bear granules or vacuoles in areas lacking neurons. Many of capillaries show immunoreactivity for all four tested antibodies in the entire central nervous system and foregut. Among the coelomocytes, granulocytes and eleocytes stain for TSH and its receptor and for TGB but not for thyroid hormone receptor. Most of the granulocytes are large (25–50 μm) but a population of small cells (10–25 μm) are also immunoreactive. None of the coelomocytes stain for GABA. We therefore suggest that the members of this hormone system can modify both metabolism and immune functions in Eisenia. Coelomocytes might be able to secrete, transport and eliminate hormones in this system.

Keywords

Earthworm TSH-TGB system GABA Immunocytochemistry Earthworm, Eisenia fetida (Annelida) 

Abbreviations

c

capsule

cc

circumpharyngeal connectives

CG

cerebral ganglion

dl

dorsolateral cell group

dm

dorsomedial cell group

gcc

neurons at the origin of circumpharyngeal connectives

l

lateral cell group

N

nucleus

np

neuropile

oe

oesophagus

ph

pharynx

SOG

suboesophageal ganglion

VG

ventral ganglion

vl

ventrolateral cell group

vm

ventromedial cell group

I., II., III.

segmental nerves

Notes

Acknowledgements

The authors are grateful to Edit Kiss for technical assistance.

References

  1. Akamizu T, Ikuyama S, Saji M, Kosugi S, Kozak C, McBright OW, Kohn LD (1990) Cloning, chromosomal assignment, and regulation of the rat thyrotropin receptor: expression of the gene is regulated by thyrotropin, agents that increase cAMP levels, and thyroid autoantibodies. Proc Natl Acad Sci U S A 87:5677–5681PubMedCrossRefGoogle Scholar
  2. Al-Yousuf S (1984) Fine structure and cytochemistry of the neurosecretory system of the earthworms. PhD Thesis. University of Newcastle Upon Tyne, UKGoogle Scholar
  3. Al-Yousuf S (1988) Distribution and ultrastructure of neurosecretory cells in the cerebral ganglion of the earthworm. J Morphol 197:1–20CrossRefGoogle Scholar
  4. Aros B, Wengert T, Vígh B, Teichmann I (1980) Immunohistochemical localization of substance P and ACTH-like activity in the central nervous system of the earthworm Lumbricus terrestris L. Acta Histochem 66:262–268PubMedGoogle Scholar
  5. Bagriacik EU, Klein JR (2000) The thyrotropin (thyroid-stimulating hormone) receptor is expressed on murine dendritic cells and on a subset of CD45Rbhigh lymph node T cells: functional role for thyroid-stimulating hormone during immune activation. J Immunol 164:6158–6165PubMedGoogle Scholar
  6. Bilej M, Brys L, Beschin A, Lucas R, Vercauteren E, Hanušová R, De Baetselier P (1995) Identification of a cytolytic protein in the colomic fluid of Eisenia foetida earthworms. Immunol Lett 45:123–128PubMedCrossRefGoogle Scholar
  7. Bilej M, De Baetselier P, Van Dijck E, Stijlemans B, Colige A, Beschin A (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize gram-negative and gram-positive bacteria. J Biol Chem 276:45840–45847PubMedCrossRefGoogle Scholar
  8. Cooper EL, Kauschke E, Cossarizza A (2002) Digging for innate immunity since Darwin and Metchnikoff. Bioessays 24:319–333PubMedCrossRefGoogle Scholar
  9. Coutelier JP, Kehrl JH, Bellur SS, Kochn LD, Notkins AL, Prabhakar BS (1990) Binding and functional effects of thyroid stimulating hormone on human immune cells. J Clin Immunol 10:204–210PubMedCrossRefGoogle Scholar
  10. Csaba G, Bierbauer J (1977) Overlapping effects of different pituitary hormones on the oogenesis and spermatogenesis of Helix pomatia. Acta Biol Med Ger 36:201–204PubMedGoogle Scholar
  11. Csoknya M, Lengvári I, Hiripi L, Eckert M, Rapus J, Elekes K (1996) Octopamine in the central nervous system of Oligochaeta: an immunocytochemical and biochemical study. Cell Tissue Res 285:27–37CrossRefGoogle Scholar
  12. Csoknya M, Matsushima O, Barna J, Hámori J, Elekes K (2000) Distribution of Eisenia-tetradecapeptide immunoreactive neurons in the nervous system of earthworms. Acta Biol Hung 51:395–408PubMedGoogle Scholar
  13. Csoknya M, Koza A, Wilhelm M (2003) Glial elements of the central nervous system of Eisenia fetida (Annelida Oligochaeta). MATT XII Congr, BudapestGoogle Scholar
  14. Davies TF, Smith BR, Hall R (1978) Binding of thyroid stimulators to guinea pig testis and thyroid. Endocrinology 103:6–10PubMedCrossRefGoogle Scholar
  15. Davies TF, Marians R, Latif R (2002) The TSH receptor reveals itself. J Clin Invest 110:161–164PubMedGoogle Scholar
  16. Davoli C, Marcheggiano A, Ravagnan G, Minu M, Serafino A, Iannoni C (1991) Iodination activity in Eisenia fetida (Annelida, Oligochaeta). Cell Tissue Res 264:9–14CrossRefGoogle Scholar
  17. De Vries-Schoumacker H (1976) Ultrastructure des cellules neurosécrétrices d'un ganglion de la chaîne nerveuse ventrale d'Eisenia fetida (Sav.) (Annelide-Oligochéte). Arch Biol 87:191–214Google Scholar
  18. Di Fiore MM, Perrone L, D'Aniello A (1997) Presence of human-like thyroid stimulating hormone (TSH) in Ciona intestinalis. Life Sci 61:623–629PubMedCrossRefGoogle Scholar
  19. Diogéne J, Dufour M, Poirier GG, Nadeau D (1997) Extrusion of earthworm coelomocytes: comparison of the cell populations recovered from the species Lumbricus terrestris, Eisenia fetida and Octolasion tyrtaeum. Lab Anim 31:326–336PubMedCrossRefGoogle Scholar
  20. Drvota V, Janson A, Norman C, Sylven C, Haggblad J, Bronnegard M, Marcus C (1995) Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem Biophys Res Commun 211:426–431PubMedCrossRefGoogle Scholar
  21. Dunn AD (1974) Ultrastructural autoradiography and cytochemistry of iodine-binding cells in the ascidian endostyle. J Exp Zool 188:103–124PubMedCrossRefGoogle Scholar
  22. Ehinger B, Myhrberg HE (1971) Neuronal localization of dopamine, noradrenaline and 5-HT in the central and peripheral nervous system of Lumbricus terrestris (L.). Histochemistry 28:265–275CrossRefPubMedGoogle Scholar
  23. Engelmann P, Pál J, Berki T, Cooper EL, Németh P (2002) Earthworm leukocytes react with different mammalian antigen-specific monoclonal antibodies. Zoology 105:257–265PubMedCrossRefGoogle Scholar
  24. Engelmann P, Cooper EL, Németh P (2004) Identification of coelomocyte subpopulations by specific monoclonal antibodies in Eisenia fetida. XXII Congr Int Soc Anal Cytol (ISAC), Montpellier. Cytometry 59A:123–124Google Scholar
  25. Eriksen KK, Hauser F, SchiØtt M, Pederson K-M, Sondergaard L, Grimmelikhuijzen CJP (2000) Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster. Genome Res 10:924–938PubMedCrossRefGoogle Scholar
  26. Eyambe SC, Goven AJ, Fitzpatrick LC, Veneblase BI, Cooper EL (1991) A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab Anim 25:61–67PubMedCrossRefGoogle Scholar
  27. Fischer E (1989) Effects of atrazine and paraquat-containing herbicides on Eisenia foetida (Annelida, Oligochaeta). Zool Anz 223:291–300Google Scholar
  28. Fujita H (1980) Evolution of the thyroid gland. In: Ishii S, Hirano T, Wada M (eds) Hormones, adaptation and evolution. Springer, Tokyo Berlin Heidelberg New York, pp 231–239Google Scholar
  29. Golding DW, Whittle AC (1977) Neurosecretion and related phenomena in annelids. Int Rev Cyt 5(Suppl):189–302Google Scholar
  30. Gorbman A, Clements M, O'Brien R (1954) Utilization of radioiodine by invertebrates with special study of several Annelida and Mollusca. J Exp Zool 127:75–92CrossRefGoogle Scholar
  31. Graves PN, Vlase H, Bobovnikova Y, Davies TF (1996) Multimeric complex formation by the thyrotropin receptor in solubilized thyroid membranes. Endocrinology 137:3915–3920PubMedCrossRefGoogle Scholar
  32. Hauser F, Nothacker HP, Grimmelikhuijzen CJ (1997) Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals. J Biol Chem 272:1002–1010PubMedCrossRefGoogle Scholar
  33. Huber GK, Weinstein SP, Graves PN, Davies TF (1992) The positive regulation of human thyrotropin (TSH) receptor messenger ribonucleic acid by recombinant human TSH is at the intranuclear level. Endocrinology 130:2858–2864PubMedCrossRefGoogle Scholar
  34. Kaloustin KV (1986) Immunochemical evidence for ACTH-like immunoreactivity in tissues of the earthworm Lumbricus terrestris. Comp Biochem Physiol 85:351–353CrossRefGoogle Scholar
  35. Klein JR (2003) Physiological relevance of thyroid stimulating hormone and thyroid stimulating hormone receptor in tissues other than the thyroid. Autoimmunity 36:417–421PubMedCrossRefGoogle Scholar
  36. Kudo M, Chen T, Nakabayashi K, Hsu SY, Hsueh AJ (2000) The nematode leucine-rich repeat-containing, G protein-coupled receptor (LGR) protein homologous to vertebrate gonadogtropin and thyrotropin receptors is constitutively active in mammalian cells. Mol Endocrinol 14:272–284PubMedCrossRefGoogle Scholar
  37. Lengvári I, Csoknya M, Merchenthaler I, Hámori J (1992) Immunohistochemical study of the nervous system in earthworm (Lumbricus terrestris L.). Acta Biol Hung 43:253–258PubMedGoogle Scholar
  38. LeRoith D, Lesniak MA, Roth J (1981) Insulin in insects and annelids. Diabetes 30:70–76PubMedCrossRefGoogle Scholar
  39. Liebmann E (1942) The coelomocytes of Lumbricida. J Morphol 71:221–249CrossRefGoogle Scholar
  40. Linthicum DS, Stein EA, Marks DH, Cooper EL (1977) Electron-microscopic observations of normal coelomocytes from the earthworm, Lumbricus terrestris. Cell Tissue Res 185:315–330PubMedCrossRefGoogle Scholar
  41. Lubics A, Reglődi D, Szelier M, Lengvári I, Kozicz T (2003) Comparative distribution of urocortin- and CRF-like immunoreactivities in the nervous system of the earthworm Lumbricus terrestris. Peptide 24:205–213CrossRefGoogle Scholar
  42. Marcheggiano A, Iannoni C, Davoli C (1985) Thyroglobulin-like immunoreactivity in the nervous system of Eisenia fetida (Annelida, Oligochaeta). Cell Tissue Res 241:429–433CrossRefGoogle Scholar
  43. Monaco F, Dominici R, Andreoli M, De Pirro R, Roche J (1981) Thyroid hormone formation in thyroglobulin synthesized in the amphioxus (Branchiostoma lanceolatum Pallas). Comp Biochem Physiol 70B:341–343Google Scholar
  44. Nothacker HP, Grimmelikhuijzen CJ (1994) Molecular cloning of a novel putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals. Biochem Biophys Res Commun 200:668PubMedCrossRefGoogle Scholar
  45. Reglődi D, Slezák S, Lubics A, Szelier M, Elekes K, Lengvári I (1997) Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris. Cell Tissue Res 288:575–582PubMedCrossRefGoogle Scholar
  46. Reglődi D, Lubics A, Szelier M, Lengvári I (1999) Gastrin- and cholecystokinin-like immunoreactivities in the nervous system of earthworm. Peptides 20:569–577PubMedCrossRefGoogle Scholar
  47. Remy C, Tramu G, Dubois MP (1982) Immunohistological demonstration of a CRF-like material in the central nervous system of the annelid Dendrobaena. Cell Tissue Res 227:569–575PubMedCrossRefGoogle Scholar
  48. Robertson HA (1975) Octopamine in the central nervous system of an annelid, Lumbricus terrestris. Experientia 31:1006–1008CrossRefGoogle Scholar
  49. Rude S (1969) Catecholamines in the ventral nerve cord of Lumbricus terrestris. Comp Biochem Physiol 28:747–752CrossRefGoogle Scholar
  50. Scharrer B (1978) Peptidergic neurons: facts and trends. Gen Comp Endocrinol 34:50–62PubMedCrossRefGoogle Scholar
  51. Sellitti DF, Dennison D, Akamizu T, Doi SQ, Kohn LD, Koshiyama H (2000) Renal expression of two “thyroid-specific” genes: thyrotropin receptor and thyroglobin. Exp Nephrol 8:235–243PubMedCrossRefGoogle Scholar
  52. Spangerberg DB (1971) Thyroxine induced metamorphosis in Aurelia. J Exp Zool 178:183–194CrossRefGoogle Scholar
  53. Spörhase-Eichmann U, Gras H, Schürmann FW (1987a) Patterns of serotonin immunoreactive neurons in the central nervous system of the earthworm Lumbricus terrestris L. I. Ganglia of the ventral cord. Cell Tissue Res 249:601–614CrossRefGoogle Scholar
  54. Spörhase-Eichmann U, Gras H, Schürmann FW (1987b) Patterns of serotonin immunoreactive neurons in the central nervous system of the earthworm Lumbricus terrestris L. II. Rostral and caudal ganglia. Cell Tissue Res 249:625–632Google Scholar
  55. Stein E, Avtalion RR, Cooper EL (1977) The coelomocytes of the earthworm Lumbricus terrestris: morphology and phagocytic properties. J Morphol 153:467–478PubMedCrossRefGoogle Scholar
  56. Telkes I, Csoknya M, Búzás P, Gábriel R, Hámori J, Elekes K (1996) GABA-immunoreactive neurons in the central and peripheral nervous system of the earthworm, Lumbricus terrestris (Oligochaeta, Annelida). Cell Tissue Res 285:463–475CrossRefGoogle Scholar
  57. Tensen CP, Van Kasteren ER, Planta RJ, Cox KJ, Burke JF, Heerikhuizen H van, Vreugdenhil E (1994) A G protein-coupled receptor with low density lipoprotein-bindig motifs suggests a role for lipoproteins in G-linked signal transduction. Proc Natl Acad Sci U S A 91:4816–4820PubMedCrossRefGoogle Scholar
  58. Thorndyke MC (1978) Evidence for a “mammalian” thyroglobulin in endostyle of ascidian Styela clava. Natura 271:61–62CrossRefGoogle Scholar
  59. Ukena K, Oumi T, Matsushima O, Ikeda T, Fujita T, Minakata H, Nomoto K (1995) Effects of annetocin, an oxytocin-related peptide isolated from the earthworm Eisenia fetida, and some putative neurotransmitters on gut motility of earthworm. J Exp Zool 272:184–193PubMedCrossRefGoogle Scholar
  60. Ukena K, Oumi T, Morishita F, Furukawa Y, Matsushima O, Takahama H, Miyata S, Ikeda T, Minakata H, Nomoto K (1997) Immunochemical demonstration of Eisenia tetradecapeptide, a bioactive peptide isolated from the gut of the earthworm Eisenia fetida, in tissues of earthworm. Cell Tissue Res 288:567–573PubMedCrossRefGoogle Scholar
  61. Wang HC, Klein JR (2001) Immune function of thyroid stimulating hormone and receptor. Crit Rev Immunol 21:323–337PubMedGoogle Scholar
  62. Wang J, Whetsell J, Klein R (1997) Local hormone networks and intestinal T cells Homeostasis. Science 275:1937PubMedCrossRefGoogle Scholar
  63. Wilhelm M, Ujfajusi Z, Csoknya M (2003) Functional morphological studies on the coeloma cells of Eisenia fetida. MITT IX Conf., BalatonfüredGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Márta Wilhelm
    • 1
  • Anna Koza
    • 2
  • Péter Engelmann
    • 3
  • Péter Németh
    • 3
  • Mária Csoknya
    • 4
  1. 1.Institute of Physical Education and Sport SciencesUniversity of PécsPécsHungary
  2. 2.MTA-PTE Adaptation Biology Research GroupUniversity of PécsPécsHungary
  3. 3.Faculty of Medicine, Department of Immunology and BiotechnologyUniversity of PécsPécsHungary
  4. 4.Department of General Zoology and NeurobiologyUniversity of PécsPécsHungary

Personalised recommendations