Cell and Tissue Research

, Volume 322, Issue 2, pp 313–320

A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis

Regular Article

Abstract

Using the combined Golgi-electron microscopy technique, we have determined the three-dimensional dendritic fields of the short visual fibres (svf 1–3) and first-order interneurons or L-fibres (L1-4) within the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis. Serial cross sections have revealed that the svf type 2 branches into one adjacent neural unit (cartridge) in layer A, the most distal of the three lamina layers A, B and C. All L-fibres, except L1-a, exhibit wide lateral branching into several neighbouring cartridges. L1-b shows a dendritic field of seven cartridges in layers A and C, dendrites of L2 target 13 cartridges in layer A, L3 branches over a total of 12 cartridges in layer A and three in layer C and L4 has the largest dendritic field size of 18 cartridges in layer C. The number of cartridges reached by the respective L-fibres is distinctly greater in the nocturnal bee than in the worker honeybee and is larger than could be estimated from our previous Golgi-light microscopy study. The extreme dorso-ventrally oriented dendritic field of L4 in M. genalis may, in addition to its potential role in spatial summation, be involved in edge detection. Thus, we have shown that the amount of lateral spreading present in the lamina provides the anatomical basis for the required spatial summation. Theoretical and future physiological work should further elucidate the roles that this lateral spreading plays to improve dim-light vision in nocturnal insects.

Keywords

Visual system Apposition compound eye First optic ganglion Spatial summation Nocturnal bee, Megalopta genalis (Insecta) 

References

  1. Burgett DM, Sukumalanand P (2000) Flight activity of Xylocopa (Nyctomelitta) tranquebarica: a night flying carpenter bee (Hymenoptera: Apidae). J Apic Res 39:75–83Google Scholar
  2. Cockerell TDA (1923) Two nocturnal bees and a minute Perdita. Am Mus Novit 66:1–4Google Scholar
  3. Cronin TW, Jarvilehto M, Weckstrom M, Lall AB (2000) Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol [A] 186:1–12PubMedCrossRefGoogle Scholar
  4. Greiner B, Ribi WA, Wcislo WT, Warrant EJ (2004a) Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res 318:429–437CrossRefPubMedGoogle Scholar
  5. Greiner B, Ribi WA, Warrant EJ (2004b) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390PubMedCrossRefGoogle Scholar
  6. Kelber A, Balkenius A, Warrant EJ (2002) Scotopic colour vision in nocturnal hawkmoths. Nature 419:922–925PubMedCrossRefGoogle Scholar
  7. Kerfoot WB (1967) The lunar periodicity of Sphecodogastra texana, a nocturnal bee. Anim Behav 15:479–486CrossRefPubMedGoogle Scholar
  8. Kien J, Menzel R (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J Comp Physiol 113:17–34CrossRefGoogle Scholar
  9. Kien J, Menzel R (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol 113:35–53CrossRefGoogle Scholar
  10. Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol 7/6B. Vision in invertebrates. Springer, Berlin Heidelberg New York, pp 471–592Google Scholar
  11. Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, New YorkGoogle Scholar
  12. Lythgoe NJ (1979) The ecology of vision. Oxford University Press, New YorkGoogle Scholar
  13. Menzel R (1974) Spectral sensitivity of monopolar cells in the bee lamina. J Comp Physiol 93:337–346CrossRefGoogle Scholar
  14. Menzel R, Blakers M (1976) Colour receptors in the bee eye-morphology and spectral sensitivity. J Comp Physiol 108:11–33CrossRefGoogle Scholar
  15. Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 30–73Google Scholar
  16. Ribi WA (1976) The first optic ganglion of the bee. II. Topographical relationships of the monopolar cells within and between cartridges. Cell Tissue Res 171:359–373CrossRefPubMedGoogle Scholar
  17. Ribi WA (1981) The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones. Cell Tissue Res 215:443–464CrossRefPubMedGoogle Scholar
  18. Ribi WA (1983a) Combined Golgi and electron microscopy techniques. In: Miller TA (ed) Experimental entomology, vol II: neuroanatomical techniques. Springer, Berlin Heidelberg New York, pp 1–18Google Scholar
  19. Ribi WA (1983b) Electron microscopy of Golgi-impregnated neurons. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 1–18Google Scholar
  20. Ribi WA (1987a) Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. Cell Tissue Res 247:393–407CrossRefGoogle Scholar
  21. Ribi WA (1987b) The structural basis of information processing in the visual system of the bee. In: Menzel R, Mercer A (eds) Neurobiology and behavior of honeybees. Springer, Berlin Heidelberg New York, pp 130–140Google Scholar
  22. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, CambridgeGoogle Scholar
  23. Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis Res 39:1611–1630CrossRefPubMedGoogle Scholar
  24. Warrant EJ (2004) Vision in the dimmest habitats on earth. J Comp Physiol [A] 190:765–789CrossRefGoogle Scholar
  25. Warrant EJ, McIntyre PD (1993) Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 40:413–461CrossRefPubMedGoogle Scholar
  26. Warrant E, Porombka T, Kirchner WH (1996) Neural image enhancement allows honeybees to see at night. Proc R Soc Lond [Biol] 263:1521–1526CrossRefGoogle Scholar
  27. Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309–1318PubMedCrossRefGoogle Scholar
  28. Waters DA (2003) Bats and moths: what is there left to learn? Physiol Entomol 28:237–250CrossRefGoogle Scholar
  29. Wcislo WT, Arneson L, Roesch K, Gonzales V, Smith A, Fernández H (2004) The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? Biol J Linn Soc 83:377–387CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Birgit Greiner
    • 1
  • Willi A. Ribi
    • 2
  • Eric J. Warrant
    • 1
  1. 1.Department of Cell and Organism BiologyLund UniversityLundSweden
  2. 2.University of Human Sciences of the Principality of LiechtensteinTriesenLiechtenstein

Personalised recommendations