Cell and Tissue Research

, Volume 323, Issue 1, pp 147–155

Differential tissue distribution of the Invs gene product inversin

  • Jens Nürnberger
  • Rosmaria Kavapurackal
  • Shi-Jun Zhang
  • Anabelle Opazo Saez
  • Gerd Heusch
  • Thomas Philipp
  • Frank Pietruck
  • Andreas Kribben
Regular Article


Nephronophthisis is a common genetic cause of end-stage renal disease in childhood. Recently, Invs was identified as the gene mutated in the infantile form of nephronophthisis. Humans with nephronophthisis develop a large number of extrarenal manifestations, including situs variations, anomalies of the hepatobiliary system, retinal degeneration and cerebellar ataxia. Mice homozygous for a mutation in the Invs gene (inv mouse) die during the first week after birth as a result of renal and liver failure. Although organ anomalies have been characterized in human nephronophthisis and the inv mouse, little is known about the tissue expression of the Invs gene product, inversin. We have used laser confocal microscopy of paraffin-embedded murine tissue sections to provide the first detailed characterization of the distribution of inversin in various organs. Our results show that inversin is localized to distal tubules in the kidney, hepatic bile ducts, acinar and ductal pancreatic cells, epithelial intestinal cells, splenic germinal centres, bronchiolar epithelial cells, dendrites of cerebellar Purkinje cells, retinal neural cells and spermatocytes and spermatids in the testis. The localization of inversin in distal tubules in the kidney and in extrarenal tissues suggests that the expression of this protein has an important function in a variety of organs. Further studies are required to understand the way in which mutations in the Invs gene lead to the multi-organ pathology of inv mouse and human nephronophthisis.


Inversin Invs Nephronophthisis Polycystic kidney disease Human Mouse 


  1. Balster DA, O'Dorisio MS, Summers MA, Turman MA (2001) Segmental expression of somatostatin receptor subtypes sst(1) and sst(2) in tubules and glomeruli of human kidney. Am J Physiol Renal Physiol 280:F457–F465PubMedGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  3. Calvet JP (2003) Ciliary signaling goes down the tubes. Nat Genet 33:113–114CrossRefPubMedGoogle Scholar
  4. Cano DA, Murcia NS, Pazour GJ, Hebrok M (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131:3457–3467CrossRefPubMedGoogle Scholar
  5. Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attie-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160:973–983PubMedGoogle Scholar
  6. Eley L, Turnpenny L, Yates LM, Craighead AS, Morgan D, Whistler C, Goodship JA, Strachan T (2004) A perspective on inversin. Cell Biol Int 28:119–124CrossRefPubMedGoogle Scholar
  7. Engel U, Breborowicz D, Bog-Hansen T, Francis D (1997) Lectin staining of renal tubules in normal kidney. Acta Pathol Microbiol Immunol Scand 105:31–34Google Scholar
  8. Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R (2000) Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol 11:814–827PubMedGoogle Scholar
  9. Gesualdo L, Di Paolo S, Calabro A, Milani S, Maiorano E, Ranieri E, Pannarale G, Schena FP (1996) Expression of epidermal growth factor and its receptor in normal and diseased human kidney: an immunohistochemical and in situ hybridization study. Kidney Int 49:656–665PubMedCrossRefGoogle Scholar
  10. Hildebrandt F, Otto E (2000) Molecular genetics of nephronophthisis and medullary cystic kidney disease. J Am Soc Nephrol 11:1753–1761PubMedGoogle Scholar
  11. Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M, Adolphs J, Hanusch H, Brandis M (1997) A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet 17:149–153CrossRefPubMedGoogle Scholar
  12. Ibraghimov-Beskrovnaya O, Dackowski WR, Foggensteiner L, Coleman N, Thiru S, Petry LR, Burn TC, Connors TD, Van Raay T, Bradley J, Qian F, Onuchic LF, Watnick TJ, Piontek K, Hakim RM, Landes GM, Germino GG, Sandford R, Klinger KW (1997) Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc Natl Acad Sci U S A 94:6397–6402CrossRefPubMedGoogle Scholar
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  14. Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D'Agati VD (1999) Polycystin-2 expression is developmentally regulated. Am J Physiol 277:F17–F25PubMedGoogle Scholar
  15. Mazziotti MV, Willis LK, Heuckeroth RO, LaRegina MC, Swanson PE, Overbeek PA, Perlmutter DH (1999) Anomalous development of the hepatobiliary system in the inv mouse. Hepatology 30:372–378CrossRefPubMedGoogle Scholar
  16. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342PubMedCrossRefGoogle Scholar
  17. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181CrossRefPubMedGoogle Scholar
  18. Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P, Strachan T (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20:149–156CrossRefPubMedGoogle Scholar
  19. Morgan D, Eley L, Sayer J, Strachan T, Yates LM, Craighead AS, Goodship JA (2002) Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. Hum Mol Genet 11:3345–3350CrossRefPubMedGoogle Scholar
  20. Morishima M, Yasui H, Nakazawa M, Ando M, Ishibashi M, Takao A (1998) Situs variation and cardiovascular anomalies in the transgenic mouse insertional mutation, inv. Teratology 57:302–309CrossRefPubMedGoogle Scholar
  21. Nurnberger J, Bacallao RL, Phillips CL (2002) Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol Biol Cell 13:3096–3106CrossRefPubMedGoogle Scholar
  22. Nurnberger J, Kribben A, Opazo Saez A, Heusch G, Philipp T, Phillips CL (2004) The Invs gene encodes a microtubule associated protein. J Am Soc Nephrol 15:1700–1710CrossRefPubMedGoogle Scholar
  23. Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, Wolf MT, Sasmaz G, Trauer U, Reinhardt R, Sudbrak R, Antignac C, Gretz N, Walz G, Schermer B, Benzing T, Hildebrandt F, Omran H (2003) Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34:455–459CrossRefPubMedGoogle Scholar
  24. Omran H, Fernandez C, Jung M, Haffner K, Fargier B, Villaquiran A, Waldherr R, Gretz N, Brandis M, Ruschendorf F, Reis A, Hildebrandt F (2000) Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet 66:118–127CrossRefPubMedGoogle Scholar
  25. Otto E, Kispert A, Schatzle S, Lescher B, Rensing C, Hildebrandt F (2000) Nephrocystin: gene expression and sequence conservation between human, mouse, and Caenorhabditis elegans. J Am Soc Nephrol 11:270–282PubMedGoogle Scholar
  26. Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, Wolf MT, Schuermann MJ, Becker A, Birkenhager R, Sudbrak R, Hennies HC, Nurnberg P, Hildebrandt F (2002) A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 71:1161–1167CrossRefPubMedGoogle Scholar
  27. Otto EA, Schermer B, Obara T, O'Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34:413–420CrossRefPubMedGoogle Scholar
  28. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943CrossRefPubMedGoogle Scholar
  29. Phillips CL, Arend LJ, Filson AJ, Kojetin DJ, Clendenon JL, Fang S, Dunn KW (2001) Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy. Am J Pathol 158:49–55PubMedGoogle Scholar
  30. Phillips CL, Miller KJ, Filson AJ, Nurnberger J, Clendenon JL, Cook G, Dunn KW, Overbeek PA, Gattone VH, Bacallao RL (2004) Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol 15:1744–1755CrossRefPubMedGoogle Scholar
  31. Richards WG, Sweeney WE, Yoder BK, Wilkinson JE, Woychik RP, Avner ED (1998) Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Invest 101:935–939PubMedCrossRefGoogle Scholar
  32. Ricker JL, Gattone VH II, Calvet JP, Rankin CA (2000) Development of autosomal recessive polycystic kidney disease in BALB/c-cpk/cpk mice. J Am Soc Nephrol 11:1837–1847PubMedGoogle Scholar
  33. Ronco P, Brunisholz M, Geniteau-Legendre M, Chatelet F, Verroust P, Richet G (1987) Physiopathologic aspects of Tamm-Horsfall protein: a phylogenetically conserved marker of the thick ascending limb of Henle's loop. Adv Nephrol Necker Hosp 16:231–249PubMedGoogle Scholar
  34. Salido EC, Lakshmanan J, Fisher DA, Shapiro LJ, Barajas L (1991) Expression of epidermal growth factor in the rat kidney. An immunocytochemical and in situ hybridization study. Histochemistry 96:65–72CrossRefPubMedGoogle Scholar
  35. Schon P, Tsuchiya K, Lenoir D, Mochizuki T, Guichard C, Takai S, Maiti AK, Nihei H, Weil J, Yokoyama T, Bouvagnet P (2002) Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Hum Genet 110:157–165CrossRefPubMedGoogle Scholar
  36. Takano K, Nakamoto T, Okajima M, Sudo A, Uetake K, Saitoh S (2003) Cerebellar and brainstem involvement in familial juvenile nephronophthisis type I. Pediatr Neurol 28:142–144CrossRefPubMedGoogle Scholar
  37. Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S, Bacallao R, Torra R, LaRusso NF, Torres VE, Harris PC (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710CrossRefPubMedGoogle Scholar
  38. Ward HH, Wang J, Phillips C (2004) Analysis of multiple Invs transcripts in mouse and MDCK cells. Genomics 84:991–1001CrossRefPubMedGoogle Scholar
  39. Watanabe D, Saijoh Y, Nonaka S, Sasaki G, Ikawa Y, Yokoyama T, Hamada H (2003) The left-right determinant inversin is a component of node monocilia and other 9+0 cilia. Development 130:1725–1734CrossRefPubMedGoogle Scholar
  40. Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350:151–164CrossRefPubMedGoogle Scholar
  41. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516CrossRefPubMedGoogle Scholar
  42. Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FF, Overbeek PA (1993) Reversal of left-right asymmetry: a situs inversus mutation. Science 260:679–682PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jens Nürnberger
    • 1
  • Rosmaria Kavapurackal
    • 1
  • Shi-Jun Zhang
    • 2
  • Anabelle Opazo Saez
    • 1
  • Gerd Heusch
    • 3
  • Thomas Philipp
    • 1
  • Frank Pietruck
    • 1
  • Andreas Kribben
    • 1
  1. 1.Department of Nephrology and HypertensionUniversity Hospital of EssenEssenGermany
  2. 2.Department of Traditional Chinese Medicine, First Affiliated HospitalSun Yat-Sen UniversityGuangzhouPeople's Republic of China
  3. 3.Department of PathophysiologyUniversity Hospital of EssenEssenGermany

Personalised recommendations