Cell and Tissue Research

, Volume 318, Issue 1, pp 121–134 | Cite as

Stages in the development of Parkinson’s disease-related pathology

  • Heiko BraakEmail author
  • Estifanos Ghebremedhin
  • Udo Rüb
  • Hansjürgen Bratzke
  • Kelly Del Tredici


The synucleinopathy, idiopathic Parkinson’s disease, is a multisystem disorder that involves only a few predisposed nerve cell types in specific regions of the human nervous system. The intracerebral formation of abnormal proteinaceous Lewy bodies and Lewy neurites begins at defined induction sites and advances in a topographically predictable sequence. As the disease progresses, components of the autonomic, limbic, and somatomotor systems become particularly badly damaged. During presymptomatic stages 1–2, inclusion body pathology is confined to the medulla oblongata/pontine tegmentum and olfactory bulb/anterior olfactory nucleus. In stages 3–4, the substantia nigra and other nuclear grays of the midbrain and forebrain become the focus of initially slight and, then, severe pathological changes. At this point, most individuals probably cross the threshold to the symptomatic phase of the illness. In the end-stages 5–6, the process enters the mature neocortex, and the disease manifests itself in all of its clinical dimensions.


Alpha-synuclein Lewy bodies Lewy neurites Parkinson’s disease Pathoarchitectonics Staging 



We thank Jürgen Bohl (Department of Pathology, Johannes Gutenberg University, Mainz) and Rob A.I. de Vos (Laboratorium Pathologie Oost Nederland, Enschede) for autopsy material, and Ms. I. Szász-Jacobi for her skillful technical support with the graphics.


  1. Albin RL, Young AB, Peney JB (1995) The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18:63–64CrossRefPubMedGoogle Scholar
  2. Alheid GF, Heimer L, Switzer RC (1990) Basal ganglia. In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 483–582Google Scholar
  3. Amaral DG, Price JL, Pitkänen A, Carmichael ST (1987) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66Google Scholar
  4. Apaydin H, Ahlskog E, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology. Arch Neurol 59:102–112Google Scholar
  5. Azuma T, Cruz RF, Bayles KA, Tomoeda CK, Montgomery EB (2003) A longitudinal study of neuropsychological change in individuals with Parkinson’s disease. Int J Geriatr Psychiatry 18:1115–1120CrossRefPubMedGoogle Scholar
  6. Bachevalier J, Mishkin M (1992) Ontogenetic development and decline of memory functions in non-human primates. In: Kostovic I, Knezevic S, Wisniewski HM, Spillich GJ (eds) Neurodevelopment, aging and cognition. Birkhäuser, Boston, pp 37–59Google Scholar
  7. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18CrossRefPubMedGoogle Scholar
  8. Bohus B, Koolhaas JM, Luiten PGM, Korte SM, Roozendaal B, Wiersma A (1996) The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine and autonomic outflow. Prog Brain Res 107:447–460PubMedGoogle Scholar
  9. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg New York, pp 1–147Google Scholar
  10. Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82PubMedGoogle Scholar
  11. Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31CrossRefPubMedGoogle Scholar
  12. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201CrossRefPubMedGoogle Scholar
  13. Braak H, Del Tredici K (2004) Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging 25:19–23CrossRefPubMedGoogle Scholar
  14. Braak H, Braak E, Yilmazer D, Vos RAI de, Jansen ENH, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88:493–500CrossRefPubMedGoogle Scholar
  15. Braak H, Braak E, Yilmazer D, Schultz C, Bohl J (1995) Age-related changes of the human cerebral cortex. In: Cruz-Sanchez FF, Ravid R, Cuzner ML (eds) Neuropathological diagnostic criteria for brain banking. Biomedical health research, vol 10. IOS, Amsterdam, pp 14–19Google Scholar
  16. Braak H, Vos RAI de, Jansen ENH, Bratzke HJ, Braak E (1998) Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog Brain Res 117:267–285PubMedGoogle Scholar
  17. Braak H, Rüb U, Sandmann-Keil D, Gai WP, Vos RAI de, Jansen Steur ENH, Arai K, Braak E (2000) Parkinson’s disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol 99:489–495CrossRefPubMedGoogle Scholar
  18. Braak H, Del Tredici K, Gai WP, Braak E (2001) Alpha-synuclein is not a requisite component of synaptic boutons in the adult human central nervous system. J Chem Neuroanat 20:245–252CrossRefGoogle Scholar
  19. Braak H, Del Tredici K, Rüb U, Vos RAI de, Jansen Steur ENH, Braak E (2003a) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211CrossRefPubMedGoogle Scholar
  20. Braak H, Rüb U Del Tredici K (2003b) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536CrossRefPubMedGoogle Scholar
  21. Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 5:277–289CrossRefGoogle Scholar
  22. Chung KKK, Dawson VL, Dawson TM (2001) The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 24:7–14CrossRefPubMedGoogle Scholar
  23. Del Tredici K, Braak H (2004) Idiopathic Parkinson’s disease: staging an α-synucleinopathy with a predictable pathoanatomy. In: Kahle P, Haass C (eds) Molecular mechanisms in Parkinson’s disease. Landes Bioscience, Georgetown, pp 1–32Google Scholar
  24. Del Tredici K, Rüb U, Vos RAI de, Bohl JRE, Braak H (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426PubMedGoogle Scholar
  25. Dickson DW (1998) Aging in the central nervous system. In: Markesbery WR (ed) Neuropathology of dementing disorders. Arnold, London, pp 56–88Google Scholar
  26. Dickson DW (1999) Tau and synuclein and their role in neuropathology. Brain Pathol 9:657–661PubMedGoogle Scholar
  27. Dickson DW, Schmidt ML, Lee VMY, Zhao ML, Yen SH, Trojanowski JQ (1994) Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease. Acta Neuropathol 87:269–276CrossRefPubMedGoogle Scholar
  28. Ding Q, Keller JN (2001) Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 31:574–584CrossRefPubMedGoogle Scholar
  29. Doty RL (2001) Olfaction. Annu Rev Psychol 52:423–452CrossRefPubMedGoogle Scholar
  30. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8Google Scholar
  31. Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates: new insights into mechanism of neurodegenerative diseases. J Neurosci Res 61:121–127CrossRefPubMedGoogle Scholar
  32. Galvin JE, Lee VMY, Trojanowski JQ (2001) Synucleinopathies clinical and pathological implications. Arch Neurol 58:186–190Google Scholar
  33. Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389CrossRefPubMedGoogle Scholar
  34. Giasson BI, Galvin JE, Lee VM-Y, Trojanowski JQ (2000) The cellular and molecular pathology of Parkinson’s disease. In: Clark CM, Trojanowski JQ (eds) Neurodegenerative dementias: clinical features and pathological mechanisms. McGraw-Hill, New York, pp 219–228Google Scholar
  35. Gibb WRG, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396PubMedGoogle Scholar
  36. Goedert M (2001) The significance of tau and α-synuclein inclusions in neurodegenerative diseases. Curr Opin Genet Dev 11:343–351CrossRefPubMedGoogle Scholar
  37. Haber SN, Gdowski MJ (2004) The basal ganglia. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 677–738Google Scholar
  38. Hasegawa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T (1992) Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev 14:1–6PubMedGoogle Scholar
  39. Hawkes C (2003) Olfaction in neurodegenerative disorder. Mov Disord 18:364–372CrossRefPubMedGoogle Scholar
  40. Hawkes CH, Shephard BC, Daniel SE (1999) Is Parkinson’s disease a primary olfactory disorder? Q J Med 92:473–480CrossRefGoogle Scholar
  41. Heimer L, Olmos J de, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedGoogle Scholar
  42. Holstege G (1996) The somatic motor system. Prog Brain Res 107:9–26PubMedGoogle Scholar
  43. Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 1306–1325Google Scholar
  44. Hopkins DA, Bieger D, Vente J de, Steinbusch HWM (1996) Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Prog Brain Res 107:79–96PubMedGoogle Scholar
  45. Huang XF, Törk I, Paxinos G (1993) Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. J Comp Neurol 330:158–182PubMedGoogle Scholar
  46. Hyman BT, Hoesen GW van, Damasio AR (1990) Memory-related systems in Alzheimer’s disease: an anatomic study. Neurology 40:1721–1730Google Scholar
  47. Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29CrossRefPubMedGoogle Scholar
  48. Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai KJ (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 872–915Google Scholar
  49. Iwanaga K, Wakabayashi K, Yoshimoto M, Tomita I, Satoh H, Takashima H, Satoh A, Seto M, Tsujihata M, Takahashi H (1999) Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental Lewy body diseases. Neurology 52:1269–1271Google Scholar
  50. Jellinger KA, Mizuno Y (2003) Parkinson’s disease. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropathologica Press, Basel, pp 159–187Google Scholar
  51. Jensen PH, Gai WP (2001) Alpha-synuclein. Axonal transport, ligand interaction, and neurodegeneration. In: Tolnay M, Probst A (eds) Neuropathology and genetics of dementia. Kluwer Academic/Plenum, New York, pp 129–134Google Scholar
  52. Kapfhammer JP, Schwab ME (1994) Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity. J Comp Neurol 340:194–206PubMedGoogle Scholar
  53. Knaap MS van der, Valk J, Bakker CJ, Schooneveld M, Faber JAJ, Willemse J, Gooskens PHJM (1991) Myelination as an expression of the functional maturity of the brain. Dev Med Child Neurol 33:849–857PubMedGoogle Scholar
  54. Koutcherov Y, Huang X-F, Halliday G, Paxinos G (2004) Organization of human brain stem nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 273–321Google Scholar
  55. Lowe J (1994) Lewy bodies. In: Calne DP (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 51–69Google Scholar
  56. McNaught KSP, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194CrossRefPubMedGoogle Scholar
  57. Mesholam RL, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease. A meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55:84–90Google Scholar
  58. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052CrossRefPubMedGoogle Scholar
  59. Mesulam MM, Hersh LB, Mash DC, Geula C (1992) Differential cholinergic innervation within functional subdivisions of the human cerebral cortex—a choline acetyltransferase study. J Comp Neurol 318:316–328PubMedGoogle Scholar
  60. Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580PubMedGoogle Scholar
  61. Nieuwenhuys R (1999) Structure and organization of fibre systems. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 113–157Google Scholar
  62. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783CrossRefPubMedGoogle Scholar
  63. Pandya DN, Yeterian EH (1990) Architecture and connections of cerebral cortex: implications for brain evolution and function. In: Scheibel AB, Wechsler AF (eds) Neurobiology of higher function. Guilford, New York, pp 53–84Google Scholar
  64. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The corticobasal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127CrossRefPubMedGoogle Scholar
  65. Pearce RK, Hawkes CH, Daniel SE (1995) The anterior olfactory nucleus in Parkinson’s disease. Mov Disord 10:283–287PubMedGoogle Scholar
  66. Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human alpha-synuclein and Parkinson’s disease variants with phospholipids. J Biol Chem 44:34393–34398CrossRefGoogle Scholar
  67. Petrides M, Pandya DN (2004) The frontal cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 951–974Google Scholar
  68. Price JL (2004) Olfaction. In: Paxinos G, Mai JM (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 1198–1212Google Scholar
  69. Reisberg B, Pattschull-Furlan A, Franssen E, Sclan SG, Kluger A, Dingcong L, Ferris SH (1992) Dementia of the Alzheimer type recapitulates ontogeny inversely on specific ordinal and temporal parameters. In: Kostovic I, Knezevic S, Wisniewski HM, Spillich GJ (eds) Neurodevelopment, aging and cognition. Birkhäuser, Boston, pp 345–369Google Scholar
  70. Reisberg B, Franssen EH, Hasan MS, Monteiro I, Boksay I, Souren LEM, Kenowsky S, Auer SR, Elahi S, Kluger A (1999) Retrogenesis: clinical, physiologic, and pathologic mechanisms in bain aging, Alzheimer’s and other dementing processes. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):28–36Google Scholar
  71. Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20CrossRefPubMedGoogle Scholar
  72. Rye DB (1997) Contributions of the pedunculopontine region to normal and altered REM sleep. Sleep 29:757–788Google Scholar
  73. Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S, Grierson AJ, Miller CC, Davies AM, Buchman VL, Anderton BH, Hanger DP (2004) Parkinson’s disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 117:1017–1024CrossRefPubMedGoogle Scholar
  74. Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Plum F (ed) Handbook of physiology. The nervous system. American Physiology Society, Bethesda, pp 169–210Google Scholar
  75. Saper CB, Sorrentino DM, German DC, Lacalle S de (1991) Medullary catecholaminergic neurons in the normal human brain and in Parkinson’s disease. Ann Neurol 29:577–584Google Scholar
  76. Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472CrossRefPubMedGoogle Scholar
  77. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840CrossRefPubMedGoogle Scholar
  78. Takahashi H, Wakabayashi K (2001) The cellular pathology of Parkinson’s disease. Neuropathology 21:315–322CrossRefPubMedGoogle Scholar
  79. Thal DR, Del Tredici K, Braak H (2004) Neurodegeneration in normal brain aging and disease. SAGE KE 23:pe26Google Scholar
  80. Trojanowski JQ, Lee VMY (2000) “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann N Y Acad Sci 924:62–67PubMedGoogle Scholar
  81. Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1990) Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol 79:581–583PubMedGoogle Scholar
  82. Wakabayashi K, Takahashi H, Obata K, Ikuta F (1992) Immunocytochemical localization of synaptic vesicle-specific protein in Lewy body-containing neurons in Parkinson’s disease. Neurosci Lett 138:237–240CrossRefPubMedGoogle Scholar
  83. Wakabayashi K, Takahashi H, Ohama E, Takeda S, Ikuta F (1993) Lewy bodies in the visceral autonomic nervous system in Parkinson’s disease. Adv Neurol 60:609–612Google Scholar
  84. Walker LC, LeVine H (2001) The cerebral proteopathies. Neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 21:83–95CrossRefGoogle Scholar
  85. Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 13:243–248Google Scholar
  86. Wolters EC, Francot C, Bergmans P, Winogrodzka A, Booij J, Berendse HW, Stoof JC (2000) Preclinical (premotor) Parkinson’s disease. J Neurol 247(Suppl 2):103–109Google Scholar
  87. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowksi A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70Google Scholar
  88. Zilles K (2004) Architecture of the human cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, San Diego, pp 997–1060Google Scholar
  89. Zola-Morgan S, Squire LR (1993) Neuroanatomy of memory. Ann Rev Neurosci 16:547–563CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Heiko Braak
    • 1
    Email author
  • Estifanos Ghebremedhin
    • 1
  • Udo Rüb
    • 1
  • Hansjürgen Bratzke
    • 2
  • Kelly Del Tredici
    • 1
  1. 1.Institute for Clinical NeuroanatomyJ.W. Goethe UniversityFrankfurt/MainGermany
  2. 2.Institute for Forensic MedicineJ.W. Goethe UniversityFrankfurt/MainGermany

Personalised recommendations