Cell and Tissue Research

, Volume 318, Issue 2, pp 313–323

Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn’s disease and infectious colitis

  • J. A. Hardin
  • L. E. Wallace
  • J. F. K. Wong
  • E. V. O’Loughlin
  • S. J. Urbanski
  • D. G. Gall
  • W. K. MacNaughton
  • P. L. Beck
Regular Article

Abstract

Colitis is associated with alterations in electrolyte and water transport. These changes give rise to some of the symptoms experienced by patients with colitis. Alterations in fluid flux may also contribute to increased susceptibility to mucosal injury. Recently, endogenous water channel proteins (aquaporins; AQPs), have been identified in colonic tissue. The expression of AQP4, AQP7 and AQP8 was examined, via reverse transcription/polymerase chain reaction, Western blotting and immunohistochemistry, in a murine model of colitis and in patients with inflammatory bowel disease or infectious colitis. Colitis was induced in C57BL/6 mice by the addition of 2.5% dextran sodium sulphate (DSS) to their drinking water. AQP expression in these mice was assessed following 12 h to 7 days of DSS exposure and during the recovery phase from 1 to 15 days following cessation of DSS exposure. Colonic water transport was measured after 1 and 3 days of DSS and following 7 days of recovery. The expression of AQP4 and AQP8 mRNA was significantly decreased after 12–24 h of DSS exposure and remained depressed throughout the treatment period. Expression of AQP7 was more variable. Protein expression followed a similar pattern to that observed for AQP mRNA. Significant alteration in colonic fluid secretion was correlated with reduced expression of AQP isoforms. Significantly, patients with active ulcerative colonic, Crohn’s colitis or infectious colitis had similar dramatic reductions in AQP expression that appeared to be correlated with disease activity. Thus, colonic injury in both mouse and man is associated with a downregulation in AQP expression.

Keywords

Aquaporin Colitis Ulcerative colitis Crohn’s disease Infectious colitis Water transport Man Mouse (female, C57BL/6) 

References

  1. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol (Lond) 542:3–16CrossRefGoogle Scholar
  2. Amlal H, Chen Q, Habo K, Wang Z, Soleimani M (2001) Fasting downregulates renal water channel AQP2 and causes polyuria. Am J Physiol Renal Physiol 280:F513–F523PubMedGoogle Scholar
  3. Arslan S, Kav T, Besisik F, Kaymakoglu S, Pinarbasi B, Tozun N, et al (2003) Clinical outcome of Crohn’s disease treated with infliximab. Hepatogastroenterology 50:952–956PubMedGoogle Scholar
  4. Asfaha S, Bell CJ, Wallace JL, MacNaughton WK (1999) Prolonged colonic epithelial hyporesponsiveness after colitis: role of inducible nitric oxide synthase. Am J Physiol 276:G703–G710PubMedGoogle Scholar
  5. Asfaha S, MacNaughton WK, Appleyard CB, Chadee K, Wallace JL (2001) Persistent epithelial dysfunction and bacterial translocation after resolution of intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 281:G635–G644PubMedGoogle Scholar
  6. Bai C, Fukuda N, Song Y, Ma T, Matthay MA, Verkman AS (1999) Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest 103:555–561PubMedGoogle Scholar
  7. Bodis B, Nagy G, Nemeth P, Mozsik G (2001) Active water selective channels in the stomach: investigation of aquaporins after ethanol and capsaicin treatment in rats. J Physiol (Paris) 95:271–275Google Scholar
  8. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, et al (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114:385–391CrossRefPubMedGoogle Scholar
  9. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW (2000) Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion 62:240–248CrossRefPubMedGoogle Scholar
  10. Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, et al (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:F1047–F1057PubMedGoogle Scholar
  11. Fischer H, Stenling R, Rubio C, Lindblom A (2001) Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors. BMC Physiol 1:1CrossRefPubMedGoogle Scholar
  12. Gallardo P, Cid LP, Vio CP, Sepulveda FV (2001) Aquaporin-2, a regulated water channel, is expressed in apical membranes of rat distal colon epithelium. Am J Physiol Gastrointest Liver Physiol 281:G856–G863PubMedGoogle Scholar
  13. Hamabata T, Liu C, Takeda Y (2002) Positive and negative regulation of water channel aquaporins in human small intestine by cholera toxin. Microb Pathog 32:273–277CrossRefPubMedGoogle Scholar
  14. Ishikawa Y, Skowronski MT, Ishida H (2000) Persistent increase in the amount of aquaporin-5 in the apical plasma membrane of rat parotid acinar cells induced by a muscarinic agonist SNI-2011. FEBS Lett 477:253–257CrossRefPubMedGoogle Scholar
  15. Itoh A, Tsujikawa T, Fujiyama Y, Bamba T (2003) Enhancement of aquaporin-3 by vasoactive intestinal polypeptide in a human colonic epithelial cell line. J Gastroenterol Hepatol 18:203–210CrossRefPubMedGoogle Scholar
  16. King LS, Yasui M (2002) Aquaporins and disease: lessons from mice to humans. Trends Endocrinol Metab 13:355–360CrossRefPubMedGoogle Scholar
  17. Kozono D, Yasui M, King LS, Agre P (2002) Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 109:1395–1399CrossRefPubMedGoogle Scholar
  18. Loo DD, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA 93:13367–13370CrossRefPubMedGoogle Scholar
  19. Loo DD, Hirayama BA, Meinild AK, Chandy G, Zeuthen T, Wright EM (1999) Passive water and ion transport by cotransporters. J Physiol (Lond) 518:195–202Google Scholar
  20. Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol (Lond) 517:317–326Google Scholar
  21. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, et al (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 97:4386–4391CrossRefPubMedGoogle Scholar
  22. Ma T, Jayaraman S, Wang KS, Song Y, Yang B, Li J et al (2001) Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am J Physiol Cell Physiol 280:C126–C134PubMedGoogle Scholar
  23. MacNaughton WK, Lowe SS, Cushing K (1998) Role of nitric oxide in inflammation-induced suppression of secretion in a mouse model of acute colitis. Am J Physiol 275:G1353–G1360PubMedGoogle Scholar
  24. Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Physiol 276:G280–G286PubMedGoogle Scholar
  25. Masyuk AI, Marinelli RA, LaRusso NF (2002) Water transport by epithelia of the digestive tract. Gastroenterology 122:545–562PubMedGoogle Scholar
  26. Morris GP, Fallone CA, Pringle GC, MacNaughton WK (1998) Gastric cytoprotection is secondary to increased mucosal fluid secretion: a study of six cytoprotective agents in the rat. J Clin Gastroenterol 27:S53–S63CrossRefPubMedGoogle Scholar
  27. Nejsum LN, Kwon TH, Marples D, Flyvbjerg A, Knepper MA, Frokiaer J, et al (2001) Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiol Renal Physiol 280:F715–F726PubMedGoogle Scholar
  28. Okada S, Misaka T, Matsumoto I, Watanabe H, Abe K (2003) Aquaporin-9 is expressed in a mucus-secreting goblet cell subset in the small intestine. FEBS Lett 540:157–162CrossRefPubMedGoogle Scholar
  29. Os CH van, Kamsteeg EJ, Marr N, Deen PM (2000) Physiological relevance of aquaporins: luxury or necessity? Pflugers Arch 440:513–520CrossRefPubMedGoogle Scholar
  30. Parvin MN, Tsumura K, Akamatsu T, Kanamori N, Hosoi K (2002) Expression and localization of AQP5 in the stomach and duodenum of the rat. Biochim Biophys Acta 1542:116–124CrossRefPubMedGoogle Scholar
  31. Preisser L, Teillet L, Aliotti S, Gobin R, Berthonaud V, Chevalier J, et al (2000) Downregulation of aquaporin-2 and -3 in aging kidney is independent of V(2) vasopressin receptor. Am J Physiol Renal Physiol 279:F144–F152PubMedGoogle Scholar
  32. Purdy MJ, Cima RR, Doble MA, Klein MA, Zinner MJ, Soybel DI (1999) Selective decreases in levels of mRNA encoding a water channel (AQP3) in ileal mucosa after ileostomy in the rat. J Gastrointest Surg 3:54–60CrossRefPubMedGoogle Scholar
  33. Sandle GI (1998) Salt and water absorption in the human colon: a modern appraisal. Gut 43:294–299PubMedGoogle Scholar
  34. Silberstein C, Kierbel A, Amodeo G, Zotta E, Bigi F, Berkowski D, et al (1999) Functional characterization and localization of AQP3 in the human colon. Braz J Med Biol Res 32:1303–1313PubMedGoogle Scholar
  35. Smith JK, Siddiqui AA, Modica LA, Dykes R, Simmons C, Schmidt J, et al (1999) Interferon-alpha upregulates gene expression of aquaporin-5 in human parotid glands. J Interferon Cytokine Res 19:929–935CrossRefPubMedGoogle Scholar
  36. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C (2001) Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogren’s syndrome patients. Lab Invest 81:143–148PubMedGoogle Scholar
  37. Steinfeld SD, Appelboom T, Delporte C (2002) Treatment with infliximab restores normal aquaporin 5 distribution in minor salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum 46:2249–2251CrossRefPubMedGoogle Scholar
  38. Towne JE, Krane CM, Bachurski CJ, Menon AG (2001) Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells. J Biol Chem 276:18657–18664CrossRefPubMedGoogle Scholar
  39. Tsubota K, Hirai S, King LS, Agre P, Ishida N (2001) Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjogren’s syndrome. Lancet 357:688–689CrossRefPubMedGoogle Scholar
  40. Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28PubMedGoogle Scholar
  41. Wallace L, Chung B, Hardin J, Gall D (2000) Aquaporins in rabbit jejunal epithelium. Gastroenterology 118:A5254Google Scholar
  42. Wallace L, Mahoney C, O’Loughlin E, Gall D, Hardin J (2001) Localization of aquaporins in the proximal and distal colon. Gastroenterology 120:A531Google Scholar
  43. Wang KS, Ma T, Filiz F, Verkman AS, Bastidas JA (2000) Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am J Physiol Gastrointest Liver Physiol 279:G463–G470PubMedGoogle Scholar
  44. Warshaw AL, Walker WA, Cornell R, Isselbacher KJ (1971) Small intestinal permeability to macromolecules. Transmission of horseradish peroxidase into mesenteric lymph and portal blood. Lab Invest 25:675–684PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. A. Hardin
    • 1
  • L. E. Wallace
    • 1
  • J. F. K. Wong
    • 1
  • E. V. O’Loughlin
    • 2
  • S. J. Urbanski
    • 1
  • D. G. Gall
    • 1
  • W. K. MacNaughton
    • 1
    • 3
  • P. L. Beck
    • 1
    • 3
    • 4
  1. 1.The Gastrointestinal Research UnitUniversity of CalgaryCalgaryCanada
  2. 2.The Children’s Hospital at WestmeadSydneyAustralia
  3. 3.The Mucosal Inflammation Research GroupUniversity of CalgaryCalgaryCanada
  4. 4.Division of Gastroenterology, Health Sciences CenterUniversity of CalgaryCalgaryCanada

Personalised recommendations